scispace - formally typeset
Search or ask a question
Author

Craig Bridges

Bio: Craig Bridges is an academic researcher from Texas Christian University. The author has contributed to research in topics: Viscosity. The author has an hindex of 1, co-authored 1 publications receiving 6 citations.
Topics: Viscosity

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, exact solutions for unidirectional unsteady flows of incompressible viscous fluids with linear dependence of viscosity on the pressure between two infinite horizontal parallel plates are established.
Abstract: New exact solutions for unidirectional unsteady flows of incompressible viscous fluids with linear dependence of viscosity on the pressure between two infinite horizontal parallel plates are establ...

7 citations


Cited by
More filters
Dissertation
01 Mar 2009
TL;DR: In this paper, the relationship between these transforms and their properties was discussed and some important applications in physics and engineering were given, as well as their properties and applications in various domains.
Abstract: Integral transforms (Laplace, Fourier and Mellin) are introduced with their properties, the relationship between these transforms was discussed and some important applications in physics and engineering were given. ااااااا دقل مت ضارعتسإ ةساردو ل ةيلماكتلا تليوحتلا لك ، سلبل تلوحت نم روف ي ر نيليمو عم ةشقانم كلذكو ،اهنم لك صاوخ و صئاصخ ةقلعلا ةشقانم مت هذه نيب طبرلاو و ،تليوحتلا مت ميدقت تاقيبطتلا ضعب تليوحتلا هذهل ةمهملا يف تلاجم ءايزيفلا ةسدنهلاو.

383 citations

Journal ArticleDOI
07 Feb 2021
TL;DR: In this paper, the authors derived exact solutions in terms of standard Bessel functions and the corresponding non-trivial shear stresses using the Laplace transform technique and suitable changes of the unknown function and the spatial variable in the transform domain.
Abstract: Some unsteady motions of incompressible upper-convected Maxwell (UCM) fluids with exponential dependence of viscosity on the pressure are analytically studied. The fluid motion between two infinite horizontal parallel plates is generated by the lower plate, which applies time-dependent shear stresses to the fluid. Exact expressions, in terms of standard Bessel functions, are established both for the dimensionless velocity fields and the corresponding non-trivial shear stresses using the Laplace transform technique and suitable changes of the unknown function and the spatial variable in the transform domain. They represent the first exact solutions for unsteady motions of non-Newtonian fluids with pressure-dependent viscosity. The similar solutions corresponding to the flow of the same fluids due to an exponential shear stress on the boundary as well as the solutions of ordinary UCM fluids performing the same motions are obtained as limiting cases of present results. Furthermore, known solutions for unsteady motions of the incompressible Newtonian fluids with/without pressure-dependent viscosity induced by oscillatory or constant shear stresses on the boundary are also obtained as limiting cases. Finally, the influence of physical parameters on the fluid motion is graphically illustrated and discussed. It is found that fluids with pressure-dependent viscosity flow are slower when compared to ordinary fluids.

8 citations

Journal ArticleDOI
TL;DR: In this paper, exact and simple expressions for the permanent solutions corresponding to two oscillatory motions of incompressible upper-convected Maxwell fluids with exponential dependence of viscosity on the pressure between parallel plates have been established using suitable changes of the spatial variable and the unknown function and the Laplace transform technique.
Abstract: Exact and simple expressions for the permanent solutions corresponding to two oscillatory motions of incompressible upper-convected Maxwell fluids with exponential dependence of viscosity on the pressure between parallel plates have been established using suitable changes of the spatial variable and the unknown function and the Laplace transform technique. The solutions that have been obtained satisfy the boundary conditions and governing equations but are independent of the initial conditions. They are important for those who want to eliminate the transients from their experiments. The similar solutions for the simple Couette flow of the same fluids as well as known results for the Newtonian fluids performing the same motions were obtained as limiting cases. The convergence of starting solutions to the corresponding permanent components that has been graphically proved could constitute an asset on the correctness of obtained results. The influence of pertinent parameters on the fluid motion and the spatial profiles of starting solutions have been graphically depicted and discussed. The oscillations’ amplitude is an increasing function with respect to the dimensionless pressure–viscosity coefficient and the Weissenberg number. It is lower for the shear stress as compared to the fluid velocity. The three-dimensional distribution of the starting velocity fields has been numerically visualized by means of the two-dimensional contour graphs.

4 citations

Journal ArticleDOI
22 Mar 2021-Fluids
TL;DR: In this paper, the authors propose a new model for non-Newtonian viscoelastic fluids based on implicit constitutive relations, where the left Cauchy-Green tensor is expressed as a function of stress.
Abstract: Viscoelastic fluids are non-Newtonian fluids that exhibit both “viscous” and “elastic” characteristics in virtue of the mechanisms used to store energy and produce entropy. Usually, the energy storage properties of such fluids are modeled using the same concepts as in the classical theory of nonlinear solids. Recently, new models for elastic solids have been successfully developed by appealing to implicit constitutive relations, and these new models offer a different perspective to the old topic of the elastic response of materials. In particular, a sub-class of implicit constitutive relations, namely relations wherein the left Cauchy–Green tensor is expressed as a function of stress, is of interest. We show how to use this new perspective in the development of mathematical models for viscoelastic fluids, and we provide a discussion of the thermodynamic underpinnings of such models. We focus on the use of Gibbs free energy instead of Helmholtz free energy, and using the standard Giesekus/Oldroyd-B models, we show how the alternative approach works in the case of well-known models. The proposed approach is straightforward to generalize to more complex settings wherein the classical approach might be impractical or even inapplicable.

3 citations

Journal ArticleDOI
24 Jan 2022-Symmetry
TL;DR: In this paper , the modified Stokes second problem for upper-convected Maxwell (UCM) fluids with linear dependence of viscosity on the pressure is analytically and numerically investigated.
Abstract: The modified Stokes second problem for incompressible upper-convected Maxwell (UCM) fluids with linear dependence of viscosity on the pressure is analytically and numerically investigated. The fluid motion, between infinite horizontal parallel plates, is generated by the lower wall, which oscillates in its plane. The movement region of the fluid is symmetric with respect to the median plane, but its motion is asymmetric due to the boundary conditions. Closed-form expressions are found for the steady-state components of start-up solutions for non-dimensional velocity and the corresponding non-trivial shear and normal stresses. Similar solutions for the simple Couette flow are obtained as limiting cases of the solutions corresponding to the motion due to cosine oscillations of the wall. For validation, it is graphically proved that the start-up solutions (numerical solutions) converge to their steady-state components. Solutions for motions of ordinary incompressible UCM fluids performing the same motions are obtained as special cases of present results using asymptotic approximations of standard Bessel functions. The time needed to reach the permanent or steady state is also determined. This time is higher for motions of ordinary fluids, compared with motions of liquids with pressure-dependent viscosity. The impact of physical parameters on the fluid motion and the spatial–temporal distribution of start-up solutions are graphically investigated and discussed. Ordinary fluids move slower than fluids with pressure-dependent viscosity.

1 citations