Author

# Craig Gentry

Other affiliations: Stanford University, NTT DoCoMo

Bio: Craig Gentry is an academic researcher from IBM. The author has contributed to research in topic(s): Encryption & Homomorphic encryption. The author has an hindex of 75, co-authored 222 publication(s) receiving 39327 citation(s). Previous affiliations of Craig Gentry include Stanford University & NTT DoCoMo.

##### Papers

More filters

••

31 May 2009

TL;DR: This work proposes a fully homomorphic encryption scheme that allows one to evaluate circuits over encrypted data without being able to decrypt, and describes a public key encryption scheme using ideal lattices that is almost bootstrappable.

Abstract: We propose a fully homomorphic encryption scheme -- i.e., a scheme that allows one to evaluate circuits over encrypted data without being able to decrypt. Our solution comes in three steps. First, we provide a general result -- that, to construct an encryption scheme that permits evaluation of arbitrary circuits, it suffices to construct an encryption scheme that can evaluate (slightly augmented versions of) its own decryption circuit; we call a scheme that can evaluate its (augmented) decryption circuit bootstrappable.Next, we describe a public key encryption scheme using ideal lattices that is almost bootstrappable.Lattice-based cryptosystems typically have decryption algorithms with low circuit complexity, often dominated by an inner product computation that is in NC1. Also, ideal lattices provide both additive and multiplicative homomorphisms (modulo a public-key ideal in a polynomial ring that is represented as a lattice), as needed to evaluate general circuits.Unfortunately, our initial scheme is not quite bootstrappable -- i.e., the depth that the scheme can correctly evaluate can be logarithmic in the lattice dimension, just like the depth of the decryption circuit, but the latter is greater than the former. In the final step, we show how to modify the scheme to reduce the depth of the decryption circuit, and thereby obtain a bootstrappable encryption scheme, without reducing the depth that the scheme can evaluate. Abstractly, we accomplish this by enabling the encrypter to start the decryption process, leaving less work for the decrypter, much like the server leaves less work for the decrypter in a server-aided cryptosystem.

4,940 citations

01 Jan 2009

TL;DR: This work designs a somewhat homomorphic "boostrappable" encryption scheme that works when the function f is the scheme's own decryption function, and shows how, through recursive self-embedding, bootstrappable encryption gives fully homomorphic encryption.

Abstract: We propose the first fully homomorphic encryption scheme, solving an old open problem. Such a scheme allows one to compute arbitrary functions over encrypted data without the decryption key—i.e., given encryptions E(m1), ..., E( mt) of m1, ..., m t, one can efficiently compute a compact ciphertext that encrypts f(m1, ..., m t) for any efficiently computable function f.
Fully homomorphic encryption has numerous applications. For example, it enables encrypted search engine queries—i.e., a search engine can give you a succinct encrypted answer to your (boolean) query without even knowing what your query was. It also enables searching on encrypted data; you can store your encrypted data on a remote server, and later have the server retrieve only files that (when decrypted) satisfy some boolean constraint, even though the server cannot decrypt the files on its own. More broadly, it improves the efficiency of secure multiparty computation.
In our solution, we begin by designing a somewhat homomorphic "boostrappable" encryption scheme that works when the function f is the scheme's own decryption function. We then show how, through recursive self-embedding, bootstrappable encryption gives fully homomorphic encryption.

2,194 citations

••

04 May 2003

Abstract: An aggregate signature scheme is a digital signature that supports aggregation: Given n signatures on n distinct messages from n distinct users, it is possible to aggregate all these signatures into a single short signature. This single signature (and the n original messages) will convince the verifier that the n users did indeed sign the n original messages (i.e., user i signed message Mi for i = 1, . . . , n). In this paper we introduce the concept of an aggregate signature, present security models for such signatures, and give several applications for aggregate signatures. We construct an efficient aggregate signature from a recent short signature scheme based on bilinear maps due to Boneh, Lynn, and Shacham. Aggregate signatures are useful for reducing the size of certificate chains (by aggregating all signatures in the chain) and for reducing message size in secure routing protocols such as SBGP. We also show that aggregate signatures give rise to verifiably encrypted signatures. Such signatures enable the verifier to test that a given ciphertext C is the encryption of a signature on a given message M. Verifiably encrypted signatures are used in contract-signing protocols. Finally, we show that similar ideas can be used to extend the short signature scheme to give simple ring signatures.

1,664 citations

••

17 May 2008

Abstract: We show how to construct a variety of "trapdoor" cryptographic tools assuming the worst-case hardness of standard lattice problems (such as approximating the length of the shortest nonzero vector to within certain polynomial factors). Our contributions include a new notion of trapdoor function with preimage sampling, simple and efficient "hash-and-sign" digital signature schemes, and identity-based encryption. A core technical component of our constructions is an efficient algorithm that, given a basis of an arbitrary lattice, samples lattice points from a discrete Gaussian probability distribution whose standard deviation is essentially the length of the longest Gram-Schmidt vector of the basis. A crucial security property is that the output distribution of the algorithm is oblivious to the particular geometry of the given basis.

1,644 citations

••

08 Jan 2012

TL;DR: A novel approach to fully homomorphic encryption (FHE) that dramatically improves performance and bases security on weaker assumptions, using some new techniques recently introduced by Brakerski and Vaikuntanathan (FOCS 2011).

Abstract: We present a novel approach to fully homomorphic encryption (FHE) that dramatically improves performance and bases security on weaker assumptions. A central conceptual contribution in our work is a new way of constructing leveled fully homomorphic encryption schemes (capable of evaluating arbitrary polynomial-size circuits), without Gentry's bootstrapping procedure.Specifically, we offer a choice of FHE schemes based on the learning with error (LWE) or ring-LWE (RLWE) problems that have 2λ security against known attacks. For RLWE, we have:• A leveled FHE scheme that can evaluate L-level arithmetic circuits with O(λ · L3) per-gate computation -- i.e., computation quasi-linear in the security parameter. Security is based on RLWE for an approximation factor exponential in L. This construction does not use the bootstrapping procedure.• A leveled FHE scheme that uses bootstrapping as an optimization, where the per-gate computation (which includes the bootstrapping procedure) is O(λ2), independent of L. Security is based on the hardness of RLWE for quasi-polynomial factors (as opposed to the sub-exponential factors needed in previous schemes).We obtain similar results to the above for LWE, but with worse performance.Based on the Ring LWE assumption, we introduce a number of further optimizations to our schemes. As an example, for circuits of large width -- e.g., where a constant fraction of levels have width at least λ -- we can reduce the per-gate computation of the bootstrapped version to O(λ), independent of L, by batching the bootstrapping operation. Previous FHE schemes all required Ω(λ3.5) computation per gate.At the core of our construction is a much more effective approach for managing the noise level of lattice-based ciphertexts as homomorphic operations are performed, using some new techniques recently introduced by Brakerski and Vaikuntanathan (FOCS 2011).

1,508 citations

##### Cited by

More filters

••

31 May 2009

TL;DR: This work proposes a fully homomorphic encryption scheme that allows one to evaluate circuits over encrypted data without being able to decrypt, and describes a public key encryption scheme using ideal lattices that is almost bootstrappable.

Abstract: We propose a fully homomorphic encryption scheme -- i.e., a scheme that allows one to evaluate circuits over encrypted data without being able to decrypt. Our solution comes in three steps. First, we provide a general result -- that, to construct an encryption scheme that permits evaluation of arbitrary circuits, it suffices to construct an encryption scheme that can evaluate (slightly augmented versions of) its own decryption circuit; we call a scheme that can evaluate its (augmented) decryption circuit bootstrappable.Next, we describe a public key encryption scheme using ideal lattices that is almost bootstrappable.Lattice-based cryptosystems typically have decryption algorithms with low circuit complexity, often dominated by an inner product computation that is in NC1. Also, ideal lattices provide both additive and multiplicative homomorphisms (modulo a public-key ideal in a polynomial ring that is represented as a lattice), as needed to evaluate general circuits.Unfortunately, our initial scheme is not quite bootstrappable -- i.e., the depth that the scheme can correctly evaluate can be logarithmic in the lattice dimension, just like the depth of the decryption circuit, but the latter is greater than the former. In the final step, we show how to modify the scheme to reduce the depth of the decryption circuit, and thereby obtain a bootstrappable encryption scheme, without reducing the depth that the scheme can evaluate. Abstractly, we accomplish this by enabling the encrypter to start the decryption process, leaving less work for the decrypter, much like the server leaves less work for the decrypter in a server-aided cryptosystem.

4,940 citations

01 Jan 2011

TL;DR: To understand the central claims of evolutionary psychology the authors require an understanding of some key concepts in evolutionary biology, cognitive psychology, philosophy of science and philosophy of mind.

Abstract: Evolutionary psychology is one of many biologically informed approaches to the study of human behavior. Along with cognitive psychologists, evolutionary psychologists propose that much, if not all, of our behavior can be explained by appeal to internal psychological mechanisms. What distinguishes evolutionary psychologists from many cognitive psychologists is the proposal that the relevant internal mechanisms are adaptations—products of natural selection—that helped our ancestors get around the world, survive and reproduce. To understand the central claims of evolutionary psychology we require an understanding of some key concepts in evolutionary biology, cognitive psychology, philosophy of science and philosophy of mind. Philosophers are interested in evolutionary psychology for a number of reasons. For philosophers of science —mostly philosophers of biology—evolutionary psychology provides a critical target. There is a broad consensus among philosophers of science that evolutionary psychology is a deeply flawed enterprise. For philosophers of mind and cognitive science evolutionary psychology has been a source of empirical hypotheses about cognitive architecture and specific components of that architecture. Philosophers of mind are also critical of evolutionary psychology but their criticisms are not as all-encompassing as those presented by philosophers of biology. Evolutionary psychology is also invoked by philosophers interested in moral psychology both as a source of empirical hypotheses and as a critical target.

4,054 citations

••

30 Oct 2006

TL;DR: This work develops a new cryptosystem for fine-grained sharing of encrypted data that is compatible with Hierarchical Identity-Based Encryption (HIBE), and demonstrates the applicability of the construction to sharing of audit-log information and broadcast encryption.

Abstract: As more sensitive data is shared and stored by third-party sites on the Internet, there will be a need to encrypt data stored at these sites. One drawback of encrypting data, is that it can be selectively shared only at a coarse-grained level (i.e., giving another party your private key). We develop a new cryptosystem for fine-grained sharing of encrypted data that we call Key-Policy Attribute-Based Encryption (KP-ABE). In our cryptosystem, ciphertexts are labeled with sets of attributes and private keys are associated with access structures that control which ciphertexts a user is able to decrypt. We demonstrate the applicability of our construction to sharing of audit-log information and broadcast encryption. Our construction supports delegation of private keys which subsumesHierarchical Identity-Based Encryption (HIBE).

3,765 citations

••

09 Dec 2001

TL;DR: A short signature scheme based on the Computational Diffie-Hellman assumption on certain elliptic and hyperelliptic curves is introduced, designed for systems where signatures are typed in by a human or signatures are sent over a low-bandwidth channel.

Abstract: We introduce a short signature scheme based on the Computational Diffie-Hellman assumption on certain elliptic and hyperelliptic curves. The signature length is half the size of a DSA signature for a similar level of security. Our short signature scheme is designed for systems where signatures are typed in by a human or signatures are sent over a low-bandwidth channel.

3,312 citations

•

01 Jan 2004TL;DR: This guide explains the basic mathematics, describes state-of-the-art implementation methods, and presents standardized protocols for public-key encryption, digital signatures, and key establishment, as well as side-channel attacks and countermeasures.

Abstract: After two decades of research and development, elliptic curve cryptography now has widespread exposure and acceptance. Industry, banking, and government standards are in place to facilitate extensive deployment of this efficient public-key mechanism. Anchored by a comprehensive treatment of the practical aspects of elliptic curve cryptography (ECC), this guide explains the basic mathematics, describes state-of-the-art implementation methods, and presents standardized protocols for public-key encryption, digital signatures, and key establishment. In addition, the book addresses some issues that arise in software and hardware implementation, as well as side-channel attacks and countermeasures. Readers receive the theoretical fundamentals as an underpinning for a wealth of practical and accessible knowledge about efficient application. Features & Benefits: * Breadth of coverage and unified, integrated approach to elliptic curve cryptosystems * Describes important industry and government protocols, such as the FIPS 186-2 standard from the U.S. National Institute for Standards and Technology * Provides full exposition on techniques for efficiently implementing finite-field and elliptic curve arithmetic* Distills complex mathematics and algorithms for easy understanding* Includes useful literature references, a list of algorithms, and appendices on sample parameters, ECC standards, and software toolsThis comprehensive, highly focused reference is a useful and indispensable resource for practitioners, professionals, or researchers in computer science, computer engineering, network design, and network data security.

2,779 citations