scispace - formally typeset
Search or ask a question
Author

Craig W. Siders

Bio: Craig W. Siders is an academic researcher from Lawrence Livermore National Laboratory. The author has contributed to research in topics: Laser & Femtosecond. The author has an hindex of 30, co-authored 157 publications receiving 5187 citations. Previous affiliations of Craig W. Siders include University of Central Florida & Los Alamos National Laboratory.


Papers
More filters
Journal ArticleDOI
TL;DR: Femtosecond x-ray and visible pulses were used to probe structural and electronic dynamics during an optically driven, solid-solid phase transition in VO, suggesting that, in this regime, the structural transition may not be thermally initiated.
Abstract: Femtosecond x-ray and visible pulses were used to probe structural and electronic dynamics during an optically driven, solid-solid phase transition in VO(2). For high interband electronic excitation (approximately 5 x 10(21) cm(-3)), a subpicosecond transformation into the high-T, rutile phase of the material is observed, simultaneous with an insulator-to-metal transition. The fast time scale observed suggests that, in this regime, the structural transition may not be thermally initiated.

1,101 citations

Journal ArticleDOI
TL;DR: This analysis shows that if the fiber's MFD could be increased arbitrarily, 36 kW of power could be obtained with diffraction-limited quality from a fiber laser or amplifier, but limits to the scaling of the MFD may restrict fiber lasers to lower output powers.
Abstract: We analyze the scalability of diffraction-limited fiber lasers considering thermal, non-linear, damage and pump coupling limits as well as fiber mode field diameter (MFD) restrictions. We derive new general relationships based upon practical considerations. Our analysis shows that if the fiber's MFD could be increased arbitrarily, 36 kW of power could be obtained with diffraction-limited quality from a fiber laser or amplifier. This power limit is determined by thermal and non-linear limits that combine to prevent further power scaling, irrespective of increases in mode size. However, limits to the scaling of the MFD may restrict fiber lasers to lower output powers.

613 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide a comprehensive update of the current status of ultra-high-power lasers and demonstrate how the technology has developed, and what technologies are to be deployed to get to these new regimes, and some critical issues facing their development.
Abstract: In the 2015 review paper 'Petawatt Class Lasers Worldwide' a comprehensive overview of the current status of highpower facilities of >200 TW was presented. This was largely based on facility specifications, with some description of their uses, for instance in fundamental ultra-high-intensity interactions, secondary source generation, and inertial confinement fusion (ICF). With the 2018 Nobel Prize in Physics being awarded to Professors Donna Strickland and Gerard Mourou for the development of the technique of chirped pulse amplification (CPA), which made these lasers possible, we celebrate by providing a comprehensive update of the current status of ultra-high-power lasers and demonstrate how the technology has developed. We are now in the era of multi-petawatt facilities coming online, with 100 PW lasers being proposed and even under construction. In addition to this there is a pull towards development of industrial and multidisciplinary applications, which demands much higher repetition rates, delivering high-average powers with higher efficiencies and the use of alternative wavelengths: mid-IR facilities. So apart from a comprehensive update of the current global status, we want to look at what technologies are to be deployed to get to these new regimes, and some of the critical issues facing their development.

559 citations

Journal ArticleDOI
25 Mar 1999-Nature
TL;DR: In this article, the authors reported the direct observation of coherent acoustic phonon propagation in crystalline gallium arsenide using a nonthermal, ultrafast-laser-driven plasma, a high-brightness, laboratory-scale source of subpicosecond X-ray pulses.
Abstract: Fundamental processes on the molecular level, such as vibrations and rotations in single molecules, liquids or crystal lattices and the breaking and formation of chemical bonds, occur on timescales of femtoseconds to picoseconds. The electronic changes associated with such processes can be monitored in a time-resolved manner by ultrafast optical spectroscopic techniques1, but the accompanying structural rearrangements have proved more difficult to observe. Time-resolved X-ray diffraction has the potential to probe fast, atomic-scale motions2,3,4,5. This is made possible by the generation of ultrashort X-ray pulses6,7,8,9,10, and several X-ray studies of fast dynamics have been reported6,7,8,11,12,13,14,15. Here we report the direct observation of coherent acoustic phonon propagation in crystalline gallium arsenide using a non-thermal, ultrafast-laser-driven plasma — a high-brightness, laboratory-scale source of subpicosecond X-ray pulses16,17,18,19. We are able to follow a 100-ps coherent acoustic pulse, generated through optical excitation of the crystal surface, as it propagates through the X-ray penetration depth. The time-resolved diffraction data are in excellent agreement with theoretical predictions for coherent phonon excitation20 in solids, demonstrating that it is possible to obtain quantitative information on atomic motions in bulk media during picosecond-scale lattice dynamics.

476 citations

Journal ArticleDOI
12 Nov 1999-Science
TL;DR: Using ultrafast, time-resolved, 1.54 angstrom x-ray diffraction, thermal and ultrafast nonthermal melting of germanium, involving passage through nonequilibrium extreme states of matter, was observed.
Abstract: Using ultrafast, time-resolved, 1.54 angstrom x-ray diffraction, thermal and ultrafast nonthermal melting of germanium, involving passage through nonequilibrium extreme states of matter, was observed. Such ultrafast, optical-pump, x-ray diffraction probe measurements provide a way to study many other transient processes in physics, chemistry, and biology, including direct observation of the atomic motion by which many solid-state processes and chemical and biochemical reactions take place.

470 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present the landmarks of the 30-odd-year evolution of ultrashort-pulse laser physics and technology culminating in the generation of intense few-cycle light pulses and discuss the impact of these pulses on high-field physics.
Abstract: The rise time of intense radiation determines the maximum field strength atoms can be exposed to before their polarizability dramatically drops due to the detachment of an outer electron. Recent progress in ultrafast optics has allowed the generation of ultraintense light pulses comprising merely a few field oscillation cycles. The arising intensity gradient allows electrons to survive in their bound atomic state up to external field strengths many times higher than the binding Coulomb field and gives rise to ionization rates comparable to the light frequency, resulting in a significant extension of the frontiers of nonlinear optics and (nonrelativistic) high-field physics. Implications include the generation of coherent harmonic radiation up to kiloelectronvolt photon energies and control of the atomic dipole moment on a subfemtosecond $(1{\mathrm{f}\mathrm{s}=10}^{\mathrm{\ensuremath{-}}15}\mathrm{}\mathrm{s})$ time scale. This review presents the landmarks of the 30-odd-year evolution of ultrashort-pulse laser physics and technology culminating in the generation of intense few-cycle light pulses and discusses the impact of these pulses on high-field physics. Particular emphasis is placed on high-order harmonic emission and single subfemtosecond extreme ultraviolet/x-ray pulse generation. These as well as other strong-field processes are governed directly by the electric-field evolution, and hence their full control requires access to the (absolute) phase of the light carrier. We shall discuss routes to its determination and control, which will, for the first time, allow access to the electromagnetic fields in light waves and control of high-field interactions with never-before-achieved precision.

2,547 citations

Journal ArticleDOI
TL;DR: In this paper, the main aspects of ultrashort laser pulse filamentation in various transparent media such as air (gases), transparent solids and liquids are introduced and discussed.

2,282 citations

Journal ArticleDOI
TL;DR: In this article, the field of femtosecond pulse shaping is reviewed, and applications of pulse shaping to optical communications, biomedical optical imaging, high power laser amplifiers, quantum control, and laser-electron beam interactions are reviewed.
Abstract: We review the field of femtosecond pulse shaping, in which Fourier synthesis methods are used to generate nearly arbitrarily shaped ultrafast optical wave forms according to user specification. An emphasis is placed on programmable pulse shaping methods based on the use of spatial light modulators. After outlining the fundamental principles of pulse shaping, we then present a detailed discussion of pulse shaping using several different types of spatial light modulators. Finally, new research directions in pulse shaping, and applications of pulse shaping to optical communications, biomedical optical imaging, high power laser amplifiers, quantum control, and laser-electron beam interactions are reviewed.

2,051 citations

Journal ArticleDOI
14 Aug 2003-Nature
TL;DR: Semiconductor lasers for optical pumping and fast optical saturable absorbers, based on either semiconductor devices or the optical nonlinear Kerr effect, have dramatically improved these lasers and opened up new frontiers for applications with extremely short temporal resolution, extremely high peak optical intensities and extremely fast pulse repetition rates.
Abstract: Ultrafast lasers, which generate optical pulses in the picosecond and femtosecond range, have progressed over the past decade from complicated and specialized laboratory systems to compact, reliable instruments. Semiconductor lasers for optical pumping and fast optical saturable absorbers, based on either semiconductor devices or the optical nonlinear Kerr effect, have dramatically improved these lasers and opened up new frontiers for applications with extremely short temporal resolution (much smaller than 10 fs), extremely high peak optical intensities (greater than 10 TW/cm2) and extremely fast pulse repetition rates (greater than 100 GHz).

1,914 citations

Journal ArticleDOI
08 Jul 2004-Nature
TL;DR: A laser accelerator that produces electron beams with an energy spread of a few per cent, low emittance and increased energy (more than 109 electrons above 80 MeV) and opens the way for compact and tunable high-brightness sources of electrons and radiation.
Abstract: Laser-driven accelerators, in which particles are accelerated by the electric field of a plasma wave (the wakefield) driven by an intense laser, have demonstrated accelerating electric fields of hundreds of GV m-1 (refs 1–3) These fields are thousands of times greater than those achievable in conventional radio-frequency accelerators, spurring interest in laser accelerators4,5 as compact next-generation sources of energetic electrons and radiation To date, however, acceleration distances have been severely limited by the lack of a controllable method for extending the propagation distance of the focused laser pulse The ensuing short acceleration distance results in low-energy beams with 100 per cent electron energy spread1,2,3, which limits potential applications Here we demonstrate a laser accelerator that produces electron beams with an energy spread of a few per cent, low emittance and increased energy (more than 109 electrons above 80 MeV) Our technique involves the use of a preformed plasma density channel to guide a relativistically intense laser, resulting in a longer propagation distance The results open the way for compact and tunable high-brightness sources of electrons and radiation

1,749 citations