scispace - formally typeset
Search or ask a question
Author

Crisita Carmen Hojilla Atienza

Other affiliations: Max Planck Society, Momentive
Bio: Crisita Carmen Hojilla Atienza is an academic researcher from Princeton University. The author has contributed to research in topics: Pyridine & Cobalt. The author has an hindex of 9, co-authored 12 publications receiving 1139 citations. Previous affiliations of Crisita Carmen Hojilla Atienza include Max Planck Society & Momentive.

Papers
More filters
Journal ArticleDOI
03 Feb 2012-Science
TL;DR: It is reported that well-characterized molecular iron coordination compounds promote the selective anti-Markovnikov addition of sterically hindered, tertiary silanes to alkenes under mild conditions, showing promise for industrial application.
Abstract: Alkene hydrosilylation, the addition of a silicon hydride (Si-H) across a carbon-carbon double bond, is one of the largest-scale industrial applications of homogeneous catalysis and is used in the commercial production of numerous consumer goods. For decades, precious metals, principally compounds of platinum and rhodium, have been used as catalysts for this reaction class. Despite their widespread application, limitations such as high and volatile catalyst costs and competing side reactions have persisted. Here, we report that well-characterized molecular iron coordination compounds promote the selective anti-Markovnikov addition of sterically hindered, tertiary silanes to alkenes under mild conditions. These Earth-abundant base-metal catalysts, coordinated by optimized bis(imino)pyridine ligands, show promise for industrial application.

444 citations

Journal ArticleDOI
TL;DR: The aryl-substituted bis(imino)pyridine cobalt methyl complex, ((Mes)PDI)CoCH3), promotes the catalytic dehydrogenative silylation of linear α-olefins to selectively form the corresponding allylsilanes with commercially relevant tertiary silanes such as (Me3SiO)2MeSiH and (EtO)3SiH.
Abstract: The aryl-substituted bis(imino)pyridine cobalt methyl complex, (MesPDI)CoCH3 (MesPDI = 2,6-(2,4,6-Me3C6H2-N═CMe)2C5H3N), promotes the catalytic dehydrogenative silylation of linear α-olefins to selectively form the corresponding allylsilanes with commercially relevant tertiary silanes such as (Me3SiO)2MeSiH and (EtO)3SiH. Dehydrogenative silylation of internal olefins such as cis- and trans-4-octene also exclusively produces the allylsilane with the silicon located at the terminus of the hydrocarbon chain, resulting in a highly selective base-metal-catalyzed method for the remote functionalization of C–H bonds with retention of unsaturation. The cobalt-catalyzed reactions also enable inexpensive α-olefins to serve as functional equivalents of the more valuable α, ω-dienes and offer a unique method for the cross-linking of silicone fluids with well-defined carbon spacers. Stoichiometric experiments and deuterium labeling studies support activation of the cobalt alkyl precursor to form a putative cobalt sil...

171 citations

Journal ArticleDOI
TL;DR: Frequency calculations successfully reproduce the experimentally determined N[triple bond]N infrared stretching frequencies and validate the computational methods.
Abstract: Sodium amalgam reduction of the aryl-substituted bis(imino)pyridine cobalt dihalide complexes ((Ar)PDI)CoCl(2) and ((iPr)BPDI)CoCl(2) ((Ar)PDI = 2,6-(2,6-R(2)-C(6)H(3)N=CMe)(2)C(5)H(3)N (R = (i)Pr, Et, Me); (iPr)BPDI = 2,6-(2,6-(i)Pr(2)-C(6)H(3)N=CPh)(2)C(5)H(3)N) in the presence of an N(2) atmosphere furnished the corresponding neutral cobalt dinitrogen complexes ((Ar)PDI)CoN(2) and ((iPr)BPDI)CoN(2). Magnetic measurements on these compounds establish doublet ground states. Two examples, ((iPr)PDI)CoN(2) and ((iPr)BPDI)CoN(2), were characterized by X-ray diffraction and exhibit metrical parameters consistent with one-electron chelate reduction and a Co(I) oxidation state. Accordingly, the toluene solution EPR spectrum of ((iPr)PDI)CoN(2) at 23 degrees C exhibits an isotropic signal with a g value of 2.003 and hyperfine coupling constant of 8 x 10(-4) cm(-1) to the I = 7/2 (59)Co center, suggesting a principally bis(imino)pyridine-based SOMO. Additional one-electron reduction of ((iPr)PDI)CoN(2) was accomplished by treatment with Na[C(10)H(8)] in THF and yielded the cobalt dinitrogen anion [((iPr)PDI)CoN(2)](-). DFT calculations on the series of cationic, neutral, and anionic bis(imino)pyridine cobalt dinitrogen compounds establish Co(I) centers in each case and a chelate-centered reduction in each of the sequential one-electron reduction steps. Frequency calculations successfully reproduce the experimentally determined N[triple bond]N infrared stretching frequencies and validate the computational methods. The electronic structures of the reduced cobalt dinitrogen complexes are evaluated in the broader context of bis(imino)pyridine base metal chemistry and the influence of the metal d electron configuration on the preference for closed-shell versus triplet diradical dianions.

171 citations

Journal ArticleDOI
TL;DR: In this article, three different classes of tridentate, nitrogen-based, terpyridine, and pyridine bis(oxazoline) ligands have been synthesized and evaluated in the catalytic hydrosilylation of olefins with tertiary silanes.

128 citations

Journal ArticleDOI
TL;DR: Aryl-substituted bis(imino)pyridine iron dinitrogen complexes are active for the hydrosilylation of 1,2,4-trivinylcyclohexane with tertiary alkoxy silanes, a process used in the manufacture of low rolling resistance tires as discussed by the authors.
Abstract: Aryl-substituted bis(imino)pyridine iron dinitrogen complexes are active for the hydrosilylation of 1,2,4-trivinylcyclohexane with tertiary alkoxy silanes, a process used in the manufacture of low rolling resistance tires. The iron compounds exhibit unprecedented selectivity for the monohydrosilylation of the desired 4-alkene that far exceeds results obtained with commercially used platinum compounds.

113 citations


Cited by
More filters
Journal ArticleDOI
29 Nov 2013-Science
TL;DR: In this paper, the authors report convenient and stable iron oxide (Fe2O3)-based catalysts as a more earth-abundant alternative for the transformation of anilines.
Abstract: Production of anilines--key intermediates for the fine chemical, agrochemical, and pharmaceutical industries--relies on precious metal catalysts that selectively hydrogenate aryl nitro groups in the presence of other easily reducible functionalities. Herein, we report convenient and stable iron oxide (Fe2O3)-based catalysts as a more earth-abundant alternative for this transformation. Pyrolysis of iron-phenanthroline complexes on carbon furnishes a unique structure in which the active Fe2O3 particles are surrounded by a nitrogen-doped carbon layer. Highly selective hydrogenation of numerous structurally diverse nitroarenes (more than 80 examples) proceeded in good to excellent yield under industrially viable conditions.

800 citations

Journal ArticleDOI
TL;DR: A mechanistic framework for understanding this compendium of radical reactions is provided, covering the development of the field and contributions to reaction invention, mechanism, and application to complex molecule synthesis.
Abstract: Cofactor-mimetic aerobic oxidation has conceptually merged with catalysis of syngas reactions to form a wide range of Markovnikov-selective olefin radical hydrofunctionalizations. We cover the development of the field and review contributions to reaction invention, mechanism, and application to complex molecule synthesis. We also provide a mechanistic framework for understanding this compendium of radical reactions.

553 citations

Journal ArticleDOI
TL;DR: The hydrogenation of alkenes is one of the most impactful reactions catalyzed by homogeneous transition metal complexes finding application in the pharmaceutical, agrochemical, and commodity chemical industries and development of reliable, readily accessible cobalt precursors facilitated catalyst discovery.
Abstract: ConspectusThe hydrogenation of alkenes is one of the most impactful reactions catalyzed by homogeneous transition metal complexes finding application in the pharmaceutical, agrochemical, and commodity chemical industries. For decades, catalyst technology has relied on precious metal catalysts supported by strong field ligands to enable highly predictable two-electron redox chemistry that constitutes key bond breaking and forming steps during turnover. Alternative catalysts based on earth abundant transition metals such as iron and cobalt not only offer potential environmental and economic advantages but also provide an opportunity to explore catalysis in a new chemical space. The kinetically and thermodynamically accessible oxidation and spin states may enable new mechanistic pathways, unique substrate scope, or altogether new reactivity. This Account describes my group’s efforts over the past decade to develop iron and cobalt catalysts for alkene hydrogenation. Particular emphasis is devoted to the inter...

520 citations

Journal ArticleDOI
TL;DR: This review aims at providing a comprehensive picture of the utilization of functional pincer ligands in first-row transition metal hydrogenation and dehydrogenation catalysis and related synthetic concepts relying on these such as the hydrogen borrowing methodology.
Abstract: The use of 3d metals in de/hydrogenation catalysis has emerged as a competitive field with respect to “traditional” precious metal catalyzed transformations. The introduction of functional pincer ligands that can store protons and/or electrons as expressed by metal–ligand cooperativity and ligand redox-activity strongly stimulated this development as a conceptual starting point for rational catalyst design. This review aims at providing a comprehensive picture of the utilization of functional pincer ligands in first-row transition metal hydrogenation and dehydrogenation catalysis and related synthetic concepts relying on these such as the hydrogen borrowing methodology. Particular emphasis is put on the implementation and relevance of cooperating and redox-active pincer ligands within the mechanistic scenarios.

502 citations