scispace - formally typeset
Search or ask a question
Author

Cristian Vignali

Bio: Cristian Vignali is an academic researcher from INAF. The author has contributed to research in topics: Active galactic nucleus & Galaxy. The author has an hindex of 85, co-authored 529 publications receiving 27128 citations. Previous affiliations of Cristian Vignali include Pennsylvania State University & University of Concepción.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors presented point-source catalogs for the 2Ms exposure of the Chandra Deep Field North, currently the deepest X-ray observation of the universe in the 0.5?8.0 keV band.
Abstract: We present point-source catalogs for the ?2 Ms exposure of the Chandra Deep Field North, currently the deepest X-ray observation of the universe in the 0.5?8.0 keV band. Five hundred and three (503) X-ray sources are detected over an ?448 arcmin2 area in up to seven X-ray bands. Twenty (20) of these X-ray sources lie in the central ?5.3 arcmin2 Hubble Deep Field North (13,600 sources deg-2). The on-axis sensitivity limits are ?2.5 ? 10-17 ergs cm-2 s-1 (0.5?2.0 keV) and ?1.4 ? 10-16 ergs cm-2 s-1 (2?8 keV). Source positions are determined using matched-filter and centroiding techniques; the median positional uncertainty is ?03. The X-ray colors of the detected sources indicate a broad variety of source types, although absorbed AGNs (including a small number of possible Compton-thick sources) are clearly the dominant type. We also match lower significance X-ray sources to optical counterparts and provide a list of 79 optically bright (R 23) lower significance Chandra sources. The majority of these sources appear to be starburst and normal galaxies. The average backgrounds in the 0.5?2.0 keV and 2?8 keV bands are 0.056 and 0.135 counts Ms-1 pixel-1, respectively. The background count distributions are very similar to Poisson distributions. We show that this ?2 Ms exposure is approximately photon limited in all seven X-ray bands for regions close to the aim point, and we predict that exposures up to ?25 Ms (0.5?2.0 keV) and ?4 Ms (2?8 keV) should remain nearly photon limited. We demonstrate that this observation does not suffer from source confusion within ?6' of the aim point, and future observations are unlikely to be source-confusion limited within ?3' of the aim point even for source densities exceeding 100,000 deg-2. These analyses directly show that Chandra can achieve significantly higher sensitivities in an efficient, nearly photon-limited manner and be largely free of source confusion. To allow consistent comparisons, we have also produced point-source catalogs for the ?1 Ms Chandra Deep Field South (CDF-S). Three hundred and twenty-six (326) X-ray sources are included in the main Chandra catalog, and an additional 42 optically bright X-ray sources are included in a lower significance Chandra catalog. We find good agreement with the photometry of the previously published CDF-S catalogs; however, we provide significantly improved positional accuracy.

880 citations

Journal ArticleDOI
TL;DR: In this article, the authors presented a source catalog for the 4Ms Chandra Deep Field-South (CDF-S) survey, which is the deepest Chandra survey to date and covers an area of 464.5 arcmin2.
Abstract: We present source catalogs for the 4 Ms Chandra Deep Field-South (CDF-S), which is the deepest Chandra survey to date and covers an area of 464.5 arcmin2. We provide a main Chandra source catalog, which contains 740 X-ray sources that are detected with WAVDETECT at a false-positive probability threshold of 10–5 in at least one of three X-ray bands (0.5-8 keV, full band; 0.5-2 keV, soft band; and 2-8 keV, hard band) and also satisfy a binomial-probability source-selection criterion of P 75% of the main-catalog sources are active galactic nuclei (AGNs); of the 300 new main-catalog sources, about 35% are likely normal and starburst galaxies, reflecting the rise of normal and starburst galaxies at the very faint flux levels uniquely accessible to the 4 Ms CDF-S. Near the center of the 4 Ms CDF-S (i.e., within an off-axis angle of 3'), the observed AGN and galaxy source densities have reached 9800+1300 – 1100 deg–2 and 6900+1100 – 900 deg–2, respectively. Simulations show that our main catalog is highly reliable and is reasonably complete. The mean backgrounds (corrected for vignetting and exposure-time variations) are 0.063 and 0.178 counts Ms–1 pixel–1 (for a pixel size of 0492) for the soft and hard bands, respectively; the majority of the pixels have zero background counts. The 4 Ms CDF-S reaches on-axis flux limits of 3.2 × 10–17, 9.1 × 10–18, and 5.5 × 10–17 erg cm–2 s–1 for the full, soft, and hard bands, respectively. An increase in the CDF-S exposure time by a factor of 2-2.5 would provide further significant gains and probe key unexplored discovery space.

716 citations

Posted Content
Kirpal Nandra, Didier Barret, Xavier Barcons, Andrew C. Fabian  +236 moreInstitutions (18)
TL;DR: The Advanced Telescope for High Energy Astrophysics (Athena+) mission as discussed by the authors provides the necessary performance (e.g., angular resolution, spectral resolution, survey grasp) to address these questions and revolutionize our understanding of the Hot and Energetic Universe.
Abstract: This White Paper, submitted to the recent ESA call for science themes to define its future large missions, advocates the need for a transformational leap in our understanding of two key questions in astrophysics: 1) How does ordinary matter assemble into the large scale structures that we see today? 2) How do black holes grow and shape the Universe? Hot gas in clusters, groups and the intergalactic medium dominates the baryonic content of the local Universe. To understand the astrophysical processes responsible for the formation and assembly of these large structures, it is necessary to measure their physical properties and evolution. This requires spatially resolved X-ray spectroscopy with a factor 10 increase in both telescope throughput and spatial resolving power compared to currently planned facilities. Feedback from supermassive black holes is an essential ingredient in this process and in most galaxy evolution models, but it is not well understood. X-ray observations can uniquely reveal the mechanisms launching winds close to black holes and determine the coupling of the energy and matter flows on larger scales. Due to the effects of feedback, a complete understanding of galaxy evolution requires knowledge of the obscured growth of supermassive black holes through cosmic time, out to the redshifts where the first galaxies form. X-ray emission is the most reliable way to reveal accreting black holes, but deep survey speed must improve by a factor ~100 over current facilities to perform a full census into the early Universe. The Advanced Telescope for High Energy Astrophysics (Athena+) mission provides the necessary performance (e.g. angular resolution, spectral resolution, survey grasp) to address these questions and revolutionize our understanding of the Hot and Energetic Universe. These capabilities will also provide a powerful observatory to be used in all areas of astrophysics.

552 citations

Journal ArticleDOI
TL;DR: In this article, the strengths of the relationships between l2 keV, αOX, and redshift for optically selected active galactic nuclei (AGNs) were examined.
Abstract: We present partial-correlation analyses that examine the strengths of the relationships between l2500 A, l2 keV, αOX, and redshift for optically selected active galactic nuclei (AGNs). We extend the work of Strateva and coworkers, which analyzed optically selected AGNs from the Sloan Digital Sky Survey (SDSS), by including 52 moderate-luminosity, optically selected AGNs from the COMBO-17 survey with corresponding deep (≈250 ks to 1 Ms) X-ray observations from the Extended Chandra Deep Field-South. The COMBO-17 survey extends ~3 mag deeper than the SDSS and probes the moderate-luminosity AGNs that numerically dominate the AGN population in the universe. We also include recently published observations of 19 high-redshift, optically selected AGNs and 46 luminous, low-redshift AGNs from the Bright Quasar Survey. The full sample used in our analysis consists of 333 AGNs, extending out to z ~ 6, with 293 (88%) having X-ray detections. The sample spans five decades in UV luminosity and four decades in X-ray luminosity. We confirm that αOX is strongly anticorrelated with l2500 A (13.6 σ), the highest significance found for this relation to date, and find evidence suggesting that the slope of this relation may be dependent on l2500 A. We find that no significant correlation exists between αOX and redshift (1.3 σ) and constrain the maximum evolution of AGN UV-to-X-ray flux ratios to be less than 30% (1 σ) out to z = 5. Using our sample's high X-ray detection fraction, we also find a significant anticorrelation (3.0 σ) between αOX and l2 keV. We make comparisons to earlier studies on this topic and discuss implications for X-ray and optical AGN luminosity functions.

538 citations

Journal ArticleDOI
TL;DR: The Chandra COSMOS Survey (C-COSMS) is a large, 1.8Ms, Chandra program that has imaged the central 0.5 deg^2 area with an effective exposure of ~160 ks as discussed by the authors.
Abstract: The Chandra COSMOS Survey (C-COSMOS) is a large, 1.8 Ms, Chandra program that has imaged the central 0.5 deg^2 of the COSMOS field (centered at 10 ^h , +02 ^o ) with an effective exposure of ~160 ks, and an outer 0.4 deg^2 area with an effective exposure of ~80 ks. The limiting source detection depths are 1.9 × 10^(–16) erg cm^(–2) s^(–1) in the soft (0.5-2 keV) band, 7.3 × 10^(–16) erg cm^(–2) s^(–1) in the hard (2-10 keV) band, and 5.7 × 10^(–16) erg cm^(–2) s^(–1) in the full (0.5-10 keV) band. Here we describe the strategy, design, and execution of the C-COSMOS survey, and present the catalog of 1761 point sources detected at a probability of being spurious of <2 × 10^(–5) (1655 in the full, 1340 in the soft, and 1017 in the hard bands). By using a grid of 36 heavily (~50%) overlapping pointing positions with the ACIS-I imager, a remarkably uniform (±12%) exposure across the inner 0.5 deg^2 field was obtained, leading to a sharply defined lower flux limit. The widely different point-spread functions obtained in each exposure at each point in the field required a novel source detection method, because of the overlapping tiling strategy, which is described in a companion paper. This method produced reliable sources down to a 7-12 counts, as verified by the resulting logN-logS curve, with subarcsecond positions, enabling optical and infrared identifications of virtually all sources, as reported in a second companion paper. The full catalog is described here in detail and is available online.

508 citations


Cited by
More filters
Journal Article
TL;DR: The first direct detection of gravitational waves and the first observation of a binary black hole merger were reported in this paper, with a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ.
Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160) Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

4,375 citations

Journal ArticleDOI
TL;DR: In this article, the authors review the range of complementary techniques and theoretical tools that allow astronomers to map the cosmic history of star formation, heavy element production, and reionization of the Universe from the cosmic "dark ages" to the present epoch.
Abstract: Over the past two decades, an avalanche of data from multiwavelength imaging and spectroscopic surveys has revolutionized our view of galaxy formation and evolution. Here we review the range of complementary techniques and theoretical tools that allow astronomers to map the cosmic history of star formation, heavy element production, and reionization of the Universe from the cosmic "dark ages" to the present epoch. A consistent picture is emerging, whereby the star-formation rate density peaked approximately 3.5 Gyr after the Big Bang, at z~1.9, and declined exponentially at later times, with an e-folding timescale of 3.9 Gyr. Half of the stellar mass observed today was formed before a redshift z = 1.3. About 25% formed before the peak of the cosmic star-formation rate density, and another 25% formed after z = 0.7. Less than ~1% of today's stars formed during the epoch of reionization. Under the assumption of a universal initial mass function, the global stellar mass density inferred at any epoch matches reasonably well the time integral of all the preceding star-formation activity. The comoving rates of star formation and central black hole accretion follow a similar rise and fall, offering evidence for co-evolution of black holes and their host galaxies. The rise of the mean metallicity of the Universe to about 0.001 solar by z = 6, one Gyr after the Big Bang, appears to have been accompanied by the production of fewer than ten hydrogen Lyman-continuum photons per baryon, a rather tight budget for cosmological reionization.

3,104 citations

Journal ArticleDOI
TL;DR: In this paper, supermassive black holes (BHs) have been found in 85 galaxies by dynamical modeling of spatially resolved kinematics, and it has been shown that BHs and bulges coevolve by regulating each other's growth.
Abstract: Supermassive black holes (BHs) have been found in 85 galaxies by dynamical modeling of spatially resolved kinematics. The Hubble Space Telescope revolutionized BH research by advancing the subject from its proof-of-concept phase into quantitative studies of BH demographics. Most influential was the discovery of a tight correlation between BH mass and the velocity dispersion σ of the bulge component of the host galaxy. Together with similar correlations with bulge luminosity and mass, this led to the widespread belief that BHs and bulges coevolve by regulating each other's growth. Conclusions based on one set of correlations from in brightest cluster ellipticals to in the smallest galaxies dominated BH work for more than a decade. New results are now replacing this simple story with a richer and more plausible picture in which BHs correlate differently with different galaxy components. A reasonable aim is to use this progress to refine our understanding of BH-galaxy coevolution. BHs with masses of 105−106M...

2,804 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review progress over the past decade in observations of large-scale star formation, with a focus on the interface between extragalactic and Galactic studies.
Abstract: We review progress over the past decade in observations of large-scale star formation, with a focus on the interface between extragalactic and Galactic studies. Methods of measuring gas contents and star-formation rates are discussed, and updated prescriptions for calculating star-formation rates are provided. We review relations between star formation and gas on scales ranging from entire galaxies to individual molecular clouds.

2,525 citations

01 Jan 2005
TL;DR: The Monthly Notices as mentioned in this paper is one of the three largest general primary astronomical research publications in the world, published by the Royal Astronomical Society (RAE), and it is the most widely cited journal in astronomy.
Abstract: Monthly Notices is one of the three largest general primary astronomical research publications. It is an international journal, published by the Royal Astronomical Society. This article 1 describes its publication policy and practice.

2,091 citations