scispace - formally typeset
Search or ask a question
Author

Cristiana Valle

Bio: Cristiana Valle is an academic researcher from National Research Council. The author has contributed to research in topics: Amyotrophic lateral sclerosis & Neurodegeneration. The author has an hindex of 20, co-authored 40 publications receiving 1149 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: New evidence indicates that MD and OS play a role also in non-SOD1 ALS and thus they may represent a target for therapy despite previous failures in clinical trials.
Abstract: It is well known that mitochondrial damage (MD) is both the major contributor to oxidative stress (OS) (the condition arising from unbalance between production and removal of reactive oxygen species) and one of the major consequences of OS, because of the high dependance of mitochondrial function on redox-sensitive targets such as intact membranes. Conditions in which neuronal cells are not able to cope with MD and OS seem to lead or contribute to several neurodegenerative diseases including Amyotrophic Lateral Sclerosis (ALS), at least in the most studied superoxide dismutase 1 (SOD1)-linked genetic variant. As summarized in this review, new evidence indicates that MD and OS play a role also in non-SOD1 ALS and thus they may represent a target for therapy despite previous failures in clinical trials.

113 citations

Journal ArticleDOI
TL;DR: A brief update on mitochondrial function and dysfunction in neurodegeneration is provided in the light of newly discovered genes associated to familial ALS and of a deeper knowledge of the mechanisms of derangement of mitochondria.

89 citations

Journal ArticleDOI
TL;DR: It is shown that the overexpression of Grx1 increases the solubility of mutant S OD1 in the cytosol but does not inhibit mitochondrial damage and apoptosis induced by mutant SOD1 in neuronal cells (SH-SY5Y) or in immortalized motoneurons (NSC-34).
Abstract: Vulnerability of motoneurons in amyotrophic lateral sclerosis (ALS) arises from a combination of several mechanisms, including protein misfolding and aggregation, mitochondrial dysfunction and oxidative damage. Protein aggregates are found in motoneurons in models for ALS linked to a mutation in the gene coding for Cu,Zn superoxide dismutase (SOD1) and in ALS patients as well. Aggregation of mutant SOD1 in the cytoplasm and/or into mitochondria has been repeatedly proposed as a main culprit for the degeneration of motoneurons. It is, however, still debated whether SOD1 aggregates represent a cause, a correlate or a consequence of processes leading to cell death. We have exploited the ability of glutaredoxins (Grxs) to reduce mixed disulfides to protein thiols either in the cytoplasm and in the IMS (Grx1) or in the mitochondrial matrix (Grx2) as a tool for restoring a correct redox environment and preventing the aggregation of mutant SOD1. Here we show that the overexpression of Grx1 increases the solubility of mutant SOD1 in the cytosol but does not inhibit mitochondrial damage and apoptosis induced by mutant SOD1 in neuronal cells (SH-SY5Y) or in immortalized motoneurons (NSC-34). Conversely, the overexpression of Grx2 increases the solubility of mutant SOD1 in mitochondria, interferes with mitochondrial fragmentation by modifying the expression pattern of proteins involved in mitochondrial dynamics, preserves mitochondrial function and strongly protects neuronal cells from apoptosis. The toxicity of mutant SOD1, therefore, mostly arises from mitochondrial dysfunction and rescue of mitochondrial damage may represent a promising therapeutic strategy.

87 citations

Journal ArticleDOI
TL;DR: It is reported that expression of the mitochondrial isoform of SIRT3 is altered in muscle from the G93A‐SOD1 mice during progression of disease; this alteration influences mitochondrial metabolism, which may be relevant for the well known energetic alterations taking place in ALS patients.

82 citations

Journal ArticleDOI
TL;DR: It is concluded that hybrid schistosomes of the F(1) generation have a drug sensitivity intermediate between those of the two parental strains and are thus suggestive of a pattern of partial dominance for the trait under study.

71 citations


Cited by
More filters
Journal ArticleDOI
20 Jun 2017-Immunity
TL;DR: Recent studies that demonstrate that different initiating CNS injuries can elicit at least two types of "reactive" astrocytes with strikingly different properties, one type being helpful and the other harmful are summarized.

1,324 citations

19 Apr 2011
TL;DR: Administration of spermidine markedly extended the lifespan of yeast, flies and worms, and human immune cells and inhibited oxidative stress in ageing mice, and found that enhanced autophagy is crucial for polyamine-induced suppression of necrosis and enhanced longevity.
Abstract: Ageing results from complex genetically and epigenetically programmed processes that are elicited in part by noxious or stressful events that cause programmed cell death Here, we report that administration of spermidine, a natural polyamine whose intracellular concentration declines during human ageing, markedly extended the lifespan of yeast, flies and worms, and human immune cells In addition, spermidine administration potently inhibited oxidative stress in ageing mice In ageing yeast, spermidine treatment triggered epigenetic deacetylation of histone H3 through inhibition of histone acetyltransferases (HAT), suppressing oxidative stress and necrosis Conversely, depletion of endogenous polyamines led to hyperacetylation, generation of reactive oxygen species, early necrotic death and decreased lifespan The altered acetylation status of the chromatin led to significant upregulation of various autophagy-related transcripts, triggering autophagy in yeast, flies, worms and human cells Finally, we found that enhanced autophagy is crucial for polyamine-induced suppression of necrosis and enhanced longevity

974 citations

Journal ArticleDOI
TL;DR: Use of PZQ will increase in the foreseeable future, whether given alone or coadministered with other anthelminthics in integrated control programmes, as well as inhibitors of a schistosome-specific bifunctional enzyme, thioredoxin-glutathione reductase.
Abstract: Purpose of reviewPraziquantel (PZQ) is the only drug being used to treat human schistosomiasis on a large scale. This review focuses on current knowledge about the mechanisms of action of PZQ, prospects for PZQ resistance, possible future alternative drugs and on exhortations that control of schisto

694 citations

Journal ArticleDOI
TL;DR: An important role for optineurin is established as an autophagy receptor in parkin-mediated mitophagy and demonstrates that defects in a single pathway can lead to neurodegenerative diseases with distinct pathologies.
Abstract: Mitophagy is a cellular quality control pathway in which the E3 ubiquitin ligase parkin targets damaged mitochondria for degradation by autophagosomes. We examined the role of optineurin in mitophagy, as mutations in optineurin are causative for amyotrophic lateral sclerosis (ALS) and glaucoma, diseases in which mitochondrial dysfunction has been implicated. Using live cell imaging, we demonstrate the parkin-dependent recruitment of optineurin to mitochondria damaged by depolarization or reactive oxygen species. Parkin’s E3 ubiquitin ligase activity is required to ubiquitinate outer mitochondrial membrane proteins, allowing optineurin to stably associate with ubiquitinated mitochondria via its ubiquitin binding domain; in the absence of parkin, optineurin transiently localizes to damaged mitochondrial tips. Following optineurin recruitment, the omegasome protein double FYVE-containing protein 1 (DFCP1) transiently localizes to damaged mitochondria to initialize autophagosome formation and the recruitment of microtubule-associated protein light chain 3 (LC3). Optineurin then induces autophagosome formation around damaged mitochondria via its LC3 interaction region (LIR) domain. Depletion of endogenous optineurin inhibits LC3 recruitment to mitochondria and inhibits mitochondrial degradation. These defects are rescued by expression of siRNA-resistant wild-type optineurin, but not by an ALS-associated mutant in the ubiquitin binding domain (E478G), or by optineurin with a mutation in the LIR domain. Optineurin and p62/SQSTM1 are independently recruited to separate domains on damaged mitochondria, and p62 is not required for the recruitment of either optineurin or LC3 to damaged mitochondria. Thus, our study establishes an important role for optineurin as an autophagy receptor in parkin-mediated mitophagy and demonstrates that defects in a single pathway can lead to neurodegenerative diseases with distinct pathologies.

617 citations

Journal ArticleDOI
TL;DR: This review summarizes the almost 50 years of research on these proteins, focusing primarily on data from vertebrates and mammals, that is, their potential impact and functions in different cell types, tissues, and various pathological conditions.
Abstract: Thioredoxins (Trxs), glutaredoxins (Grxs), and peroxiredoxins (Prxs) have been characterized as electron donors, guards of the intracellular redox state, and “antioxidants”. Today, these redox catalysts are increasingly recognized for their specific role in redox signaling. The number of publications published on the functions of these proteins continues to increase exponentially. The field is experiencing an exciting transformation, from looking at a general redox homeostasis and the pathological oxidative stress model to realizing redox changes as a part of localized, rapid, specific, and reversible redox-regulated signaling events. This review summarizes the almost 50 years of research on these proteins, focusing primarily on data from vertebrates and mammals. The role of Trx fold proteins in redox signaling is discussed by looking at reaction mechanisms, reversible oxidative post-translational modifications of proteins, and characterized interaction partners. On the basis of this analysis, th...

572 citations