scispace - formally typeset
Search or ask a question
Author

Cristina C. Rohena

Bio: Cristina C. Rohena is an academic researcher from University of California, San Diego. The author has contributed to research in topics: Microtubule & Tubulin. The author has an hindex of 10, co-authored 23 publications receiving 408 citations. Previous affiliations of Cristina C. Rohena include University of Texas at San Antonio & University of Texas Health Science Center at San Antonio.

Papers
More filters
Journal ArticleDOI
TL;DR: Recent progress in the chemistry and biology of these diverse microtubule stabilizers focusing on the wide range of organisms that produce these compounds, their mechanisms of inhibiting microtubules-dependent processes, mechanisms of drug resistance, and their interactions with tubulin including their distinct binding sites and modes are covered.

113 citations

Journal ArticleDOI
08 Jun 2017-Blood
TL;DR: It is proposed that a sialic acid-based "self-associated molecular pattern" on erythrocytes also helps maintain neutrophil quiescence in the bloodstream and help explain why neutrophils become easily activated after separation from whole blood.

61 citations

Journal ArticleDOI
TL;DR: AJ imparts strong inter-protofilament stability in a manner different from other microtubule stabilizers that covalently bind to tubulin, consistent with the distinct effects of the taccalonolides as compared with other stabilizers.
Abstract: The taccalonolides are highly acetylated steroids that stabilize cellular microtubules and overcome multiple mechanisms of taxane resistance. Recently, two potent taccalonolides, AF and AJ, were identified that bind tubulin directly and enhance microtubule polymerization. Extensive studies were conducted to characterize these new taccalonolides. AF and AJ caused aberrant mitotic spindles and bundling of interphase microtubules that differed from the effects of either paclitaxel or laulimalide. AJ also distinctly affected microtubule polymerization in that it enhanced the rate and extent of polymerization in the absence of any noticeable effect on microtubule nucleation. Additionally, the resulting microtubules were found to be profoundly cold stable. These data, along with studies showing synergistic antiproliferative effects between AJ and either paclitaxel or laulimalide, suggest a distinct binding site. Direct binding studies demonstrated that AJ could not be displaced from microtubules by paclitaxel, laulimalide or denaturing conditions, suggesting irreversible binding of AJ to microtubules. Mass spectrometry confirmed a covalent interaction of AJ with a peptide of β-tubulin containing the cyclostreptin binding sites. Importantly, AJ imparts strong inter-protofilament stability in a manner different from other microtubule stabilizers that covalently bind tubulin, consistent with the distinct effects of the taccalonolides as compared to other stabilizers. AF was found to be a potent and effective antitumor agent that caused tumor regression in the MDA-MB-231 breast cancer xenograft model. The antitumor efficacy of some taccalonolides, which stabilize microtubules in a manner different from other microtubule stabilizers, provides the impetus to explore the therapeutic potential of this site.

51 citations

Journal ArticleDOI
04 Nov 2016-eLife
TL;DR: A fundamental homeostatic mechanism by which the AMPK-GIV axis reinforces cell junctions against stress-induced collapse and also provides mechanistic insight into the tumor-suppressive action of Metformin is defined.
Abstract: Loss of epithelial polarity impacts organ development and function; it is also oncogenic. AMPK, a key sensor of metabolic stress stabilizes cell-cell junctions and maintains epithelial polarity; its activation by Metformin protects the epithelial barrier against stress and suppresses tumorigenesis. How AMPK protects the epithelium remains unknown. Here, we identify GIV/Girdin as a novel effector of AMPK, whose phosphorylation at a single site is both necessary and sufficient for strengthening mammalian epithelial tight junctions and preserving cell polarity and barrier function in the face of energetic stress. Expression of an oncogenic mutant of GIV (cataloged in TCGA) that cannot be phosphorylated by AMPK increased anchorage-independent growth of tumor cells and helped these cells to evade the tumor-suppressive action of Metformin. This work defines a fundamental homeostatic mechanism by which the AMPK-GIV axis reinforces cell junctions against stress-induced collapse and also provides mechanistic insight into the tumor-suppressive action of Metformin.

43 citations

Journal ArticleDOI
TL;DR: In vivo, the HCl salt of 2,6-dimethylfuro[2,3-d]pyrimidines reduced tumor size and vascularity in xenograft and allograft murine models and was superior to docetaxel and sunitinib, without overt toxicity, thus affords potential combination chemotherapy in a single agent.

43 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An overview of the physiological functions of AMPK is provided and the potential of this enzyme as a therapeutic target across diverse disease areas is discussed and Pharmacological activation of AM PK and the associated drug development challenges are assessed.
Abstract: Since the discovery of AMP-activated protein kinase (AMPK) as a central regulator of energy homeostasis, many exciting insights into its structure, regulation and physiological roles have been revealed. While exercise, caloric restriction, metformin and many natural products increase AMPK activity and exert a multitude of health benefits, developing direct activators of AMPK to elicit beneficial effects has been challenging. However, in recent years, direct AMPK activators have been identified and tested in preclinical models, and a small number have entered clinical trials. Despite these advances, which disease(s) represent the best indications for therapeutic AMPK activation and the long-term safety of such approaches remain to be established.

357 citations

Journal ArticleDOI
TL;DR: Drugs that target the microtubule will continue to have a major impact in oncology not only as anti-mitotics but also as potent inhibitors of interphase functions, and in future may also prove to be effective in reducing the consequences of neurodegenerative disease.

201 citations

Journal ArticleDOI
25 Feb 2016-Oncogene
TL;DR: It is suggested that paclitaxel targets the FOXM1-KIF20A axis to drive abnormal mitotic spindle formation and mitotic catastrophe and that deregulated FoxM1 and Kif20A expression may confer paclitAXel resistance.
Abstract: FOXM1 has been implicated in taxane resistance, but the molecular mechanism involved remains elusive. In here, we show that FOXM1 depletion can sensitize breast cancer cells and mouse embryonic fibroblasts into entering paclitaxel-induced senescence, with the loss of clonogenic ability, and the induction of senescence-associated β-galactosidase activity and flat cell morphology. We also demonstrate that FOXM1 regulates the expression of the microtubulin-associated kinesin KIF20A at the transcriptional level directly through a Forkhead response element (FHRE) in its promoter. Similar to FOXM1, KIF20A expression is downregulated by paclitaxel in the sensitive MCF-7 breast cancer cells and deregulated in the paclitaxel-resistant MCF-7TaxR cells. KIF20A depletion also renders MCF-7 and MCF-7TaxR cells more sensitive to paclitaxel-induced cellular senescence. Crucially, resembling paclitaxel treatment, silencing of FOXM1 and KIF20A similarly promotes abnormal mitotic spindle morphology and chromosome alignment, which have been shown to induce mitotic catastrophe-dependent senescence. The physiological relevance of the regulation of KIF20A by FOXM1 is further highlighted by the strong and significant correlations between FOXM1 and KIF20A expression in breast cancer patient samples. Statistical analysis reveals that both FOXM1 and KIF20A protein and mRNA expression significantly associates with poor survival, consistent with a role of FOXM1 and KIF20A in paclitaxel action and resistance. Collectively, our findings suggest that paclitaxel targets the FOXM1-KIF20A axis to drive abnormal mitotic spindle formation and mitotic catastrophe and that deregulated FOXM1 and KIF20A expression may confer paclitaxel resistance. These findings provide insights into the underlying mechanisms of paclitaxel resistance and have implications for the development of predictive biomarkers and novel chemotherapeutic strategies for paclitaxel resistance.

164 citations

Journal ArticleDOI
TL;DR: This article discusses the systematic establishment of target combination, lead generation, and optimization of multitarget-directed ligands (MTDLs), and analyzes some MTDLs research cases for several complex diseases in recent years and the physicochemical properties of 117 clinical multitarget drugs, with the aim of revealing the trends and insights of the potential use of MT DLs.
Abstract: Due to the complexity of multifactorial diseases, single-target drugs do not always exhibit satisfactory efficacy. Recently, increasing evidence indicates that simultaneous modulation of multiple targets may improve both therapeutic safety and efficacy, compared with single-target drugs. However, few multitarget drugs are on market or in clinical trials, despite the best efforts of medicinal chemists. This article discusses the systematic establishment of target combination, lead generation, and optimization of multitarget-directed ligands (MTDLs). Moreover, we analyze some MTDLs research cases for several complex diseases in recent years and the physicochemical properties of 117 clinical multitarget drugs, with the aim to reveal the trends and insights of the potential use of MTDLs.

141 citations

Journal ArticleDOI
TL;DR: This Perspective illustrates the different classes of compounds that behave similar to CA-4, analyzes their binding mode to αβ-tubulin according to recently available structural complexes, and includes described approaches to improve their delivery.
Abstract: The unique characteristics of the tumor vasculature offer the possibility to selectively target tumor growth and vascularization using tubulin-destabilizing agents. Evidence accumulated with combretastatin A-4 (CA-4) and its prodrug CA-4P support the therapeutic value of compounds sharing this mechanism of action. However, the chemical instability and poor solubility of CA-4 demand alternative compounds that are able to surmount these limitations. This Perspective illustrates the different classes of compounds that behave similar to CA-4, analyzes their binding mode to αβ-tubulin according to recently available structural complexes, and includes described approaches to improve their delivery. In addition, dissecting the mechanism of action of CA-4 and analogues allows a closer insight into the advantages and drawbacks associated with these tubulin-destabilizing agents that behave as vascular disrupting agents (VDAs).

135 citations