scispace - formally typeset
Search or ask a question
Author

Cristina Romero-Trigueros

Bio: Cristina Romero-Trigueros is an academic researcher from Spanish National Research Council. The author has contributed to research in topics: Irrigation & Reclaimed water. The author has an hindex of 10, co-authored 21 publications receiving 338 citations. Previous affiliations of Cristina Romero-Trigueros include University of Bari & University of Murcia.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the long-term impacts of irrigation systems differing on the quantity and quality of water, and their interactions, on the biomass (phospholipid fatty acid analysis), diversity and composition (16S rRNA gene profiling), and enzyme activities of the soil microbial community of an orchard cultivated with grapefruit trees in South-East Spain.
Abstract: Sustainable agriculture in Mediterranean areas is compromised by the structural deficit of water resources. Under this situation, the impacts of alternative water managements on the microbial community, as a critical component of the soil quality, need to be properly understood. We evaluated the long-term impacts of irrigation systems differing on the quantity and quality of water, and their interactions, on the biomass (phospholipid fatty acid analysis), diversity and composition (16S rRNA gene profiling), and enzyme activities of the soil microbial community of an orchard cultivated with grapefruit trees in South-East Spain. The impact of water quantity was evaluated by irrigation with optimal amount of water or by irrigation with a reduced volume of water in the temporal frame when the crop is less sensitive, so-called regulated deficit irrigation (RDI). The impact of water quality was evaluated attending to the source of the irrigation water: water from a river channel-transfer (TW) or reclaimed water from a wastewater treatment plant (RW). Electrical conductivity was higher in soils irrigated with RW than in soils irrigated with TW. The content of total organic C in the soil was affected by water quality but not by water quantity. Soils irrigated with TW showed higher total organic C than soils irrigated with RW. As in the case of plant productivity, RDI had a negative impact on plant productivity, soil microbial biomass and enzyme activities in summer. This finding indicates a slow-down of organic matter decomposition under restricted irrigation. Bacterial biomass was more sensitive to RDI when RW was used, whereas the fungal biomass was more sensitive to RDI when TW was used. Bacterial diversity and plant productivity were more sensitive to water quantity than to water quality. The increase of the abundance of Proteobacteria and Bacteroidetes in soils irrigated with RW in summer suggested a higher resilience of this treatment mediated by copiotrophic organisms. A recovery of the enzyme activity and microbial biomass of soils irrigated with RW and RDI was observed in January and June. The resilience of biogeochemical and the microbial biomass processes after RDI coursed through changes in the structure of the microbial community as revealed by the multivariate analyses of fatty acids. The utilisation of reclaimed water during RDI promoted a more-resilient community that translated into a recovery of microbial biomass and enzyme activities after the water restriction ended. These results imply potential ecological benefits of the irrigation with reclaimed water that should be considered under the water limitation predicted in climate change models in Mediterranean areas.

88 citations

Journal ArticleDOI
TL;DR: In this article, the physiological and agronomic responses of commercial ‘Citrus Clementina cv. Orogrande’ mandarin trees to irrigation with saline reclaimed water (RW) were evaluated during six consecutive seasons (2008-2013) and compared with those observed in trees irrigated with fresh water from Tagus-Segura water transfer canal (TW).

79 citations

Journal ArticleDOI
TL;DR: In this paper, two CICYT (AGL2010-17553 and AGL2013-49047-C2-482 515 2-R) projects and SIRRIMED (KBBE-2009-1- 2-03, PROPOSAL N◦245159) 483 project were supported by SENECA.

76 citations

Journal ArticleDOI
TL;DR: In this article, the physiological and agronomic effects of irrigating a commercial young grapefruit orchard with saline reclaimed water (RW) combined or not with a regulated deficit irrigation (RDI) strategy were analyzed over three consecutive years.

42 citations

Journal ArticleDOI
TL;DR: C crop water stress index (CWSI) was the thermal indicator that showed the highest level of agreement with the stem water potential of the different treatments even though Tc and Tc-Ta were also significantly correlated.
Abstract: Water is not always accessible for agriculture due to its scarcity. In order to successfully develop irrigation strategies that optimize water productivity characterization of the plant, the water status is necessary. We assessed the suitability of thermal indicators by infrared thermometry (IRT) to determine the water status of grapefruit in a commercial orchard with long term irrigation using saline reclaimed water (RW) and regulated deficit irrigation (RDI) in Southeastern Spain. The results showed that Tc-Ta differences were positive in a wide range of vapor pressure deficits (VPD), and the major Tc-Ta were found at 10.00 GMT, before and after the highest daily values of VPD and solar radiation, respectively, were reached. In addition, we evaluated the relationships between Tc-Ta and VPD to establish the Non-Water Stressed Baselines (NWSBs), which are necessary to accurately calculate the crop water stress index (CWSI). Two important findings were found, which include i) the best significant correlations (p < 0.005) found at 10.00 GMT and their slopes were positive, and ii) NWSBs showed a marked hourly and seasonal variation. The hourly shift was mainly explained by the variation in solar radiation since both the NWSB-slope and the NWSB-intercept were significantly correlated with a zenith solar angle (θZ) (p < 0.005). The intercept was greater when θZ was close to 0 (at midday) and the slope displayed a marked hysteresis throughout the day, increasing in the morning and decreasing in the afternoon. The NWSBs determination, according to the season improved most of their correlation coefficients. In addition, the relationship significance of Tc-Ta versus VPD was higher in the period where the intercept and Tc-Ta were low. CWSI was the thermal indicator that showed the highest level of agreement with the stem water potential of the different treatments even though Tc and Tc-Ta were also significantly correlated. We highlight the suitability of thermal indicators measured by IRT to determine the water status of grapefruits under saline (RW) and water stress (RDI) conditions.

33 citations


Cited by
More filters
Journal Article
TL;DR: This work found significant variation in Arabidopsis thaliana ecotypes in accumulation and tolerance of Pb, and screened ethyl methanesulfonate-mutagenized M2 populations and identified several Pb-accumulating mutants.
Abstract: In addition to the often-cited advantages of using Arabidopsis thaliana as a model system in plant biological research (1), Arabidopsis has many additional characteristics that make it an attractive experimental organism for studying lea d (Pb) accumulation and tolerance in plants. These include its fortuitous familial relationship to many known metal hyperaccumulators (Brassicaceae), as well as similar Pbaccumulation patterns to most other plants. Using nutrient-agar plates, hydroponic culture, and Pb-contaminated soils as growth media, we found significant variation in Arabidopsis thaliana ecotypes in accumulation and tolerance of Pb. In addition, we have found that Pb accumulation is not obligatorily linked with Pb tolerance, suggesti ng that different genetic factors control these two processes. We also screened ethyl methanesulfonate-mutagenized M2 populations and identified several Pb-accumulating mutants. Current characterization of these mutants indicates that their phenotypes are likely due to alteration of general metal ion uptake or translocation processes since these mutants also accumulate many other metals in shoots. We expect that further characterization of the ecotypes and mutants will shed light on the basic genetic and physiological underpinnings of plant-based Pb remediation. 7. Aromatic nitroreduction of acifluorfen in soils, rhizospheres, and pure cultures of rhizobacteria. Zablotowicz, R. M., Locke, M. A., and Hoagland, R. E. Phytoremediation of soil and water contaminants. Washington, DC : American Chemical Society, 1997. p. 38-53. NAL Call #: QD1.A45-no.664 Abstract: Reduction of nitroaromatic compounds to their corresponding amino derivatives is one of several pathways in the degradation of nitroxenobiotics. Our studies with the nitrodiphenyl ether herbicide acifluorfen showed rapid metabolism to am inoacifluorfen followed by incorporation into unextractable soil components in both soil and rhizosphere suspensions. Aminoacifluorfen was formed more rapidly in rhizospheres compared to soil, which can be attributed to higher microbial populations, espec ially of Gram-negative bacteria. We identified several strains of Pseudomonas fluorescens that possess nitroreductase activity capable of converting acifluorfen to aminoacifluorfen. Factors affecting acifluorfen nitroreductase activity in pure cultures an d cell-free extracts, and other catabolic transformations of acifluorfen, ether bond cleavage, are discussed. Plant rhizospheres should be conducive for aromatic nitroreduction. Nitroreduction by rhizobacteria is an important catabolic pathway for the ini tial degradation of various nitroherbicides and other nitroaromatic compounds in soils under Reduction of nitroaromatic compounds to their corresponding amino derivatives is one of several pathways in the degradation of nitroxenobiotics. Our studies with the nitrodiphenyl ether herbicide acifluorfen showed rapid metabolism to am inoacifluorfen followed by incorporation into unextractable soil components in both soil and rhizosphere suspensions. Aminoacifluorfen was formed more rapidly in rhizospheres compared to soil, which can be attributed to higher microbial populations, espec ially of Gram-negative bacteria. We identified several strains of Pseudomonas fluorescens that possess nitroreductase activity capable of converting acifluorfen to aminoacifluorfen. Factors affecting acifluorfen nitroreductase activity in pure cultures an d cell-free extracts, and other catabolic transformations of acifluorfen, ether bond cleavage, are discussed. Plant rhizospheres should be conducive for aromatic nitroreduction. Nitroreduction by rhizobacteria is an important catabolic pathway for the ini tial degradation of various nitroherbicides and other nitroaromatic compounds in soils under phytoremediation management. 8. Ascorbate: a biomarker of herbicide stress in wetland plants. Lytle, T. F. and Lytle, J. S. Phytoremediation of soil and water contaminants. Washington, DC : American Chemical Society, 1997. p. 106-113. NAL Call #: QD1.A45-no.664 Abstract: In laboratory exposures of wetland plants to low herbicide levels (<0.1 micrograms/mL), some plants showed increased total ascorbic acid suggesting a stimulatory effect on ascorbic acid synthesis occurred; at higher herbicide conce ntrations (greater than or equal to 0.1 micrograms/mL) a notable decline in total ascorbic acid and increase in the oxidized form, dehydroascorbic acid occurred. Vigna luteola and Sesbania vesicaria were exposed for 7 and 21 days respectively to atrazine (0.05 to 1 microgram/mL); Spartina alterniflora 28 days at 0.1 micrograms/mL trifluralin; Hibiscus moscheutos 14 days at 0.1 and 1 microgram/mL metolachlor in fresh and brackish water. The greatest increase following low dosage occurred with S. alterniflo ra, increasing from <600 micrograms/g wet wt. total ascorbic acid to >1000 micrograms/g. Ascorbic acid may be a promising biomarker of estuarine plants exposed to herbicide runoff; stimulation of ascorbic acid synthesis may enable some wetland plant s used in phytoremediation to cope with low levels of these compounds. In laboratory exposures of wetland plants to low herbicide levels (<0.1 micrograms/mL), some plants showed increased total ascorbic acid suggesting a stimulatory effect on ascorbic acid synthesis occurred; at higher herbicide conce ntrations (greater than or equal to 0.1 micrograms/mL) a notable decline in total ascorbic acid and increase in the oxidized form, dehydroascorbic acid occurred. Vigna luteola and Sesbania vesicaria were exposed for 7 and 21 days respectively to atrazine (0.05 to 1 microgram/mL); Spartina alterniflora 28 days at 0.1 micrograms/mL trifluralin; Hibiscus moscheutos 14 days at 0.1 and 1 microgram/mL metolachlor in fresh and brackish water. The greatest increase following low dosage occurred with S. alterniflo ra, increasing from <600 micrograms/g wet wt. total ascorbic acid to >1000 micrograms/g. Ascorbic acid may be a promising biomarker of estuarine plants exposed to herbicide runoff; stimulation of ascorbic acid synthesis may enable some wetland plant s used in phytoremediation to cope with low levels of these compounds. 9. Atmospheric nitrogenous compounds and ozone--is NO(x) fixation by plants a possible solution. Wellburn, A. R. New phytol. 139: 1 pp. 5-9. (May 1998). NAL Call #: 450-N42 Descriptors: ozoneair-pollution nitrogen-dioxide nitric-oxide air-quality tolerancebioremediationacclimatizationnutrient-sources nutrient-uptake plantscultivarsgenetic-variation literature-reviews 10. Atrazine degradation in pesticide-contaminated soils: phytoremediation potential. Kruger, E. L., Anhalt, J. C., Sorenson, D., Nelson, B., Chouhy, A. L., Anderson, T. A., and Coats, J. R. Phytoremediation of soil and water contaminants. Washington, DC : American Chemical Society, 1997. p. 54-64. NAL Call #: QD1.A45-no. 664 Abstract: Studies were conducted in the laboratory to determine the fate of atrazine in pesticide-contaminated soils from agrochemical dealer sites. No significant differences in atrazine concentrations occurred in soils treated with atrazine i ndividually or combinations with metolachlor and trifluralin. In a screening study carried out in soils from four agrochemical dealer sites, rapid mineralization of atrazine occurred in three out of eight soils tested, with the greatest amount occurring i n Bravo rhizosphere soil (35% of the applied atrazine after 9 weeks). Suppression of atrazine mineralization in the Bravo rhizosphere soil did not occur with the addition of high concentrations of herbicide mixtures, but instead was increased. Plants had a positive impact on dissipation of aged Studies were conducted in the laboratory to determine the fate of atrazine in pesticide-contaminated soils from agrochemical dealer sites. No significant differences in atrazine concentrations occurred in soils treated with atrazine i ndividually or combinations with metolachlor and trifluralin. In a screening study carried out in soils from four agrochemical dealer sites, rapid mineralization of atrazine occurred in three out of eight soils tested, with the greatest amount occurring i n Bravo rhizosphere soil (35% of the applied atrazine after 9 weeks). Suppression of atrazine mineralization in the Bravo rhizosphere soil did not occur with the addition of high concentrations of herbicide mixtures, but instead was increased. Plants had a positive impact on dissipation of aged atrazine in soil, with significantly less atrazine extractable from Kochia-vegetated soils than from nonvegetated soils. 11. Bacterial inoculants of forage grasses that enhance degradation of 2-chlorobenzoic acid in soil. Siciliano, S. D. and Germida, J. J. Environ toxicol chem. 16: 6 pp. 1098-1104. (June 1997). NAL Call #: QH545.A1E58 Descriptors: polluted-soils bioremediationAbstract: Biological remediation of contaminated soil is an effective method of reducing risk to human and ecosystem health. Bacteria and plants might be used to enhance remediation of soil pollutants in situ. This study assessed the potential of bacteria (12 isolates), plants (16 forage grasses), and plant-bacteria associations (selected pairings) to remediate 2-chlorobenzoic acid (2CBA)-contaminated soil. Initially, grass viability was assessed in 2CBA-contaminated soil. Soil was contaminated wi th 2CBA, forage grasses were grown under growth chamber conditions for 42 or 60 d, and the 2CBA concentration in soil was determined by gas chromatography. Only five of 16 forage grasses grew in 2CBA-treated (816 mg/kg) soil. Growth of Bromus inermis had no effect on 2CBA concentration, whereas Agropyron intermedium, B. biebersteinii, A. riparum, and Elymus dauricus decreased 2CBA relative to nonplanted control soil by 32 to 42%. The 12 bacteria isolates were screened for their ability to promote the germ ination of the five grasses in 2CBA-contaminated soil. Inoculation of A. riparum with Pseudomonas aeruginos

1,049 citations

Journal ArticleDOI
TL;DR: The potential of wireless sensors and IoT in agriculture, as well as the challenges expected to be faced when integrating this technology with the traditional farming practices are highlighted.
Abstract: Despite the perception people may have regarding the agricultural process, the reality is that today's agriculture industry is data-centered, precise, and smarter than ever. The rapid emergence of the Internet-of-Things (IoT) based technologies redesigned almost every industry including “smart agriculture” which moved the industry from statistical to quantitative approaches. Such revolutionary changes are shaking the existing agriculture methods and creating new opportunities along a range of challenges. This article highlights the potential of wireless sensors and IoT in agriculture, as well as the challenges expected to be faced when integrating this technology with the traditional farming practices. IoT devices and communication techniques associated with wireless sensors encountered in agriculture applications are analyzed in detail. What sensors are available for specific agriculture application, like soil preparation, crop status, irrigation, insect and pest detection are listed. How this technology helping the growers throughout the crop stages, from sowing until harvesting, packing and transportation is explained. Furthermore, the use of unmanned aerial vehicles for crop surveillance and other favorable applications such as optimizing crop yield is considered in this article. State-of-the-art IoT-based architectures and platforms used in agriculture are also highlighted wherever suitable. Finally, based on this thorough review, we identify current and future trends of IoT in agriculture and highlight potential research challenges.

514 citations

Journal ArticleDOI
TL;DR: This review paper evaluates the physiological and biochemical responses of the plant to salinity along with phytohormone response and highlights omics approach to understand salt stress tolerance.

319 citations

Journal ArticleDOI
TL;DR: The latest trends and applications of leading technologies related to agricultural UAVs, control technologies, equipment, and development are considered and the future development of the agricultural Uavs and their challenges are presented.
Abstract: For agricultural applications, regularized smart-farming solutions are being considered, including the use of unmanned aerial vehicles (UAVs). The UAVs combine information and communication technologies, robots, artificial intelligence, big data, and the Internet of Things. The agricultural UAVs are highly capable, and their use has expanded across all areas of agriculture, including pesticide and fertilizer spraying, seed sowing, and growth assessment and mapping. Accordingly, the market for agricultural UAVs is expected to continue growing with the related technologies. In this study, we consider the latest trends and applications of leading technologies related to agricultural UAVs, control technologies, equipment, and development. We discuss the use of UAVs in real agricultural environments. Furthermore, the future development of the agricultural UAVs and their challenges are presented.

251 citations

Journal ArticleDOI
TL;DR: A technique for data acquisition and image processing was developed utilizing small unmanned aerial vehicles, multispectral imaging, and deep learning convolutional neural networks to evaluate phenotypic characteristics on citrus crops.
Abstract: Traditional plant breeding evaluation methods are time-consuming, labor-intensive, and costly. Accurate and rapid phenotypic trait data acquisition and analysis can improve genomic selection and accelerate cultivar development. In this work, a technique for data acquisition and image processing was developed utilizing small unmanned aerial vehicles (UAVs), multispectral imaging, and deep learning convolutional neural networks to evaluate phenotypic characteristics on citrus crops. This low-cost and automated high-throughput phenotyping technique utilizes artificial intelligence (AI) and machine learning (ML) to: (i) detect, count, and geolocate trees and tree gaps; (ii) categorize trees based on their canopy size; (iii) develop individual tree health indices; and (iv) evaluate citrus varieties and rootstocks. The proposed remote sensing technique was able to detect and count citrus trees in a grove of 4,931 trees, with precision and recall of 99.9% and 99.7%, respectively, estimate their canopy size with overall accuracy of 85.5%, and detect, count, and geolocate tree gaps with a precision and recall of 100% and 94.6%, respectively. This UAV-based technique provides a consistent, more direct, cost-effective, and rapid method to evaluate phenotypic characteristics of citrus varieties and rootstocks.

148 citations