scispace - formally typeset
Search or ask a question
Author

Crystal Smith-Spangler

Bio: Crystal Smith-Spangler is an academic researcher from American Medical Association. The author has contributed to research in topics: Pedometer. The author has an hindex of 1, co-authored 1 publications receiving 1943 citations.
Topics: Pedometer

Papers
More filters
Journal ArticleDOI
21 Nov 2007-JAMA
TL;DR: The results suggest that the use of a pedometer is associated with significant increases in physical activity and significant decreases in body mass index and blood pressure.
Abstract: ContextWithout detailed evidence of their effectiveness, pedometers have recently become popular as a tool for motivating physical activity.ObjectiveTo evaluate the association of pedometer use with physical activity and health outcomes among outpatient adults.Data SourcesEnglish-language articles from MEDLINE, EMBASE, Sport Discus, PsychINFO, Cochrane Library, Thompson Scientific (formerly known as Thompson ISI), and ERIC (1966-2007); bibliographies of retrieved articles; and conference proceedings.Study SelectionStudies were eligible for inclusion if they reported an assessment of pedometer use among adult outpatients, reported a change in steps per day, and included more than 5 participants.Data Extraction and Data SynthesisTwo investigators independently abstracted data about the intervention; participants; number of steps per day; and presence or absence of obesity, diabetes, hypertension, or hyperlipidemia. Data were pooled using random-effects calculations, and meta-regression was performed.ResultsOur searches identified 2246 citations; 26 studies with a total of 2767 participants met inclusion criteria (8 randomized controlled trials [RCTs] and 18 observational studies). The participants' mean (SD) age was 49 (9) years and 85% were women. The mean intervention duration was 18 weeks. In the RCTs, pedometer users significantly increased their physical activity by 2491 steps per day more than control participants (95% confidence interval [CI], 1098-3885 steps per day, P < .001). Among the observational studies, pedometer users significantly increased their physical activity by 2183 steps per day over baseline (95% CI, 1571-2796 steps per day, P < .0001). Overall, pedometer users increased their physical activity by 26.9% over baseline. An important predictor of increased physical activity was having a step goal such as 10 000 steps per day (P = .001). When data from all studies were combined, pedometer users significantly decreased their body mass index by 0.38 (95% CI, 0.05-0.72; P = .03). This decrease was associated with older age (P = .001) and having a step goal (P = .04). Intervention participants significantly decreased their systolic blood pressure by 3.8 mm Hg (95% CI, 1.7-5.9 mm Hg, P < .001). This decrease was associated with greater baseline systolic blood pressure (P = .009) and change in steps per day (P = .08).ConclusionsThe results suggest that the use of a pedometer is associated with significant increases in physical activity and significant decreases in body mass index and blood pressure. Whether these changes are durable over the long term is undetermined.

2,085 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The recommended quantity and quality of exercise for developing and maintaining Cardiorespiratory and Muscular Fitness, and Flexibility in healthy adults is discussed in the position stand of the American College of Sports Medicine (ACSM) Position Stand.
Abstract: The purpose of this Position Stand is to provide guidance to professionals who counsel and prescribe individualized exercise to apparently healthy adults of all ages. These recommendations also may apply to adults with certain chronic diseases or disabilities, when appropriately evaluated and advised by a health professional. This document supersedes the 1998 American College of Sports Medicine (ACSM) Position Stand, "The Recommended Quantity and Quality of Exercise for Developing and Maintaining Cardiorespiratory and Muscular Fitness, and Flexibility in Healthy Adults." The scientific evidence demonstrating the beneficial effects of exercise is indisputable, and the benefits of exercise far outweigh the risks in most adults. A program of regular exercise that includes cardiorespiratory, resistance, flexibility, and neuromotor exercise training beyond activities of daily living to improve and maintain physical fitness and health is essential for most adults. The ACSM recommends that most adults engage in moderate-intensity cardiorespiratory exercise training for ≥30 min·d on ≥5 d·wk for a total of ≥150 min·wk, vigorous-intensity cardiorespiratory exercise training for ≥20 min·d on ≥3 d·wk (≥75 min·wk), or a combination of moderate- and vigorous-intensity exercise to achieve a total energy expenditure of ≥500-1000 MET·min·wk. On 2-3 d·wk, adults should also perform resistance exercises for each of the major muscle groups, and neuromotor exercise involving balance, agility, and coordination. Crucial to maintaining joint range of movement, completing a series of flexibility exercises for each the major muscle-tendon groups (a total of 60 s per exercise) on ≥2 d·wk is recommended. The exercise program should be modified according to an individual's habitual physical activity, physical function, health status, exercise responses, and stated goals. Adults who are unable or unwilling to meet the exercise targets outlined here still can benefit from engaging in amounts of exercise less than recommended. In addition to exercising regularly, there are health benefits in concurrently reducing total time engaged in sedentary pursuits and also by interspersing frequent, short bouts of standing and physical activity between periods of sedentary activity, even in physically active adults. Behaviorally based exercise interventions, the use of behavior change strategies, supervision by an experienced fitness instructor, and exercise that is pleasant and enjoyable can improve adoption and adherence to prescribed exercise programs. Educating adults about and screening for signs and symptoms of CHD and gradual progression of exercise intensity and volume may reduce the risks of exercise. Consultations with a medical professional and diagnostic exercise testing for CHD are useful when clinically indicated but are not recommended for universal screening to enhance the safety of exercise.

7,223 citations

Journal ArticleDOI
TL;DR: The considerable growth in the science and application of pulmonary rehabilitation since 2006 adds further support for its efficacy in a wide range of individuals with chronic respiratory disease.
Abstract: Background: Pulmonary rehabilitation is recognized as a core component of the management of individuals with chronic respiratory disease. Since the 2006 American Thoracic Society (ATS)/European Respiratory Society (ERS) Statement on Pulmonary Rehabilitation, there has been considerable growth in our knowledge of its efficacy and scope. Purpose: The purpose of this Statement is to update the 2006 document, including a new definition of pulmonary rehabilitation and highlighting key concepts and major advances in the field. Methods: A multidisciplinary committee of experts representing the ATS Pulmonary Rehabilitation Assembly and the ERS Scientific Group 01.02, “Rehabilitation and Chronic Care,” determined the overall scope of this update through group consensus. Focused literature reviews in key topic areas were conducted by committee members with relevant clinical and scientific expertise. The final content of this Statement was agreed on by all members. Results: An updated definition of pulmonary rehabilitation is proposed. New data are presented on the science and application of pulmonary rehabilitation, including its effectiveness in acutely ill individuals with chronic obstructive pulmonary disease, and in individuals with other chronic respiratory diseases. The important role of pulmonary rehabilitation in chronic disease management is highlighted. In addition, the role of health behavior change in optimizing and maintaining benefits is discussed. Conclusions: The considerable growth in the science and application of pulmonary rehabilitation since 2006 adds further support for its efficacy in a wide range of individuals with chronic respiratory disease Read More: http://www.atsjournals.org/doi/abs/10.1164/rccm.201309-1634ST

2,734 citations

Journal ArticleDOI
TL;DR: There is inadequate evidence to determine whether PA prevents or attenuates detrimental changes in chronic disease risk during weight gain, and no evidence from well-designed randomized controlled trials exists to judge the effectiveness of PA for prevention of weight regain after weight loss.
Abstract: Overweight and obesity affects more than 66% of the adult population and is associated with a variety of chronic diseases. Weight reduction reduces health risks associated with chronic diseases and is therefore encouraged by major health agencies. Guidelines of the National Heart, Lung, and Blood Institute (NHLBI) encourage a 10% reduction in weight, although considerable literature indicates reduction in health risk with 3% to 5% reduction in weight. Physical activity (PA) is recommended as a component of weight management for prevention of weight gain, for weight loss, and for prevention of weight regain after weight loss. In 2001, the American College of Sports Medicine (ACSM) published a Position Stand that recommended a minimum of 150 min wk(-1) of moderate-intensity PA for overweight and obese adults to improve health; however, 200-300 min wk(-1) was recommended for long-term weight loss. More recent evidence has supported this recommendation and has indicated more PA may be necessary to prevent weight regain after weight loss. To this end, we have reexamined the evidence from 1999 to determine whether there is a level at which PA is effective for prevention of weight gain, for weight loss, and prevention of weight regain. Evidence supports moderate-intensity PA between 150 and 250 min wk(-1) to be effective to prevent weight gain. Moderate-intensity PA between 150 and 250 min wk(-1) will provide only modest weight loss. Greater amounts of PA (>250 min wk(-1)) have been associated with clinically significant weight loss. Moderate-intensity PA between 150 and 250 min wk(-1) will improve weight loss in studies that use moderate diet restriction but not severe diet restriction. Cross-sectional and prospective studies indicate that after weight loss, weight maintenance is improved with PA >250 min wk(-1). However, no evidence from well-designed randomized controlled trials exists to judge the effectiveness of PA for prevention of weight regain after weight loss. Resistance training does not enhance weight loss but may increase fat-free mass and increase loss of fat mass and is associated with reductions in health risk. Existing evidence indicates that endurance PA or resistance training without weight loss improves health risk. There is inadequate evidence to determine whether PA prevents or attenuates detrimental changes in chronic disease risk during weight gain.

2,505 citations

Journal ArticleDOI
TL;DR: The goals of the American College of Cardiology and the American Heart Association are to prevent cardiovascular diseases (CVDs) and improve the management of these diseases.
Abstract: Preamble and Transition to ACC/AHA Guidelines to The goals of the American College of Cardiology (ACC) and the American Heart Association (AHA) are to prevent cardiovascular diseases (CVDs); improve the management …

2,211 citations

OtherDOI
TL;DR: Physical inactivity is a primary cause of most chronic diseases as discussed by the authors, and the body rapidly maladapts to insufficient physical activity, and if continued, results in substantial decreases in both total and quality years of life.
Abstract: Chronic diseases are major killers in the modern era. Physical inactivity is a primary cause of most chronic diseases. The initial third of the article considers: activity and prevention definitions; historical evidence showing physical inactivity is detrimental to health and normal organ functional capacities; cause vs. treatment; physical activity and inactivity mechanisms differ; gene-environment interaction [including aerobic training adaptations, personalized medicine, and co-twin physical activity]; and specificity of adaptations to type of training. Next, physical activity/exercise is examined as primary prevention against 35 chronic conditions [Accelerated biological aging/premature death, low cardiorespiratory fitness (VO2max), sarcopenia, metabolic syndrome, obesity, insulin resistance, prediabetes, type 2 diabetes, non-alcoholic fatty liver disease, coronary heart disease, peripheral artery disease, hypertension, stroke, congestive heart failure, endothelial dysfunction, arterial dyslipidemia, hemostasis, deep vein thrombosis, cognitive dysfunction, depression and anxiety, osteoporosis, osteoarthritis, balance, bone fracture/falls, rheumatoid arthritis, colon cancer, breast cancer, endometrial cancer, gestational diabetes, preeclampsia, polycystic ovary syndrome, erectile dysfunction, pain, diverticulitis, constipation, and gallbladder diseases]. The article ends with consideration of deterioration of risk factors in longer-term sedentary groups; clinical consequences of inactive childhood/adolescence; and public policy. In summary, the body rapidly maladapts to insufficient physical activity, and if continued, results in substantial decreases in both total and quality years of life. Taken together, conclusive evidence exists that physical inactivity is one important cause of most chronic diseases. In addition, physical activity primarily prevents, or delays, chronic diseases, implying that chronic disease need not be an inevitable outcome during life.

1,753 citations