scispace - formally typeset
Search or ask a question
Author

Csilla Krausz

Bio: Csilla Krausz is an academic researcher from University of Florence. The author has contributed to research in topics: Male infertility & Y chromosome. The author has an hindex of 60, co-authored 186 publications receiving 10945 citations. Previous affiliations of Csilla Krausz include Pasteur Institute & University of Edinburgh.


Papers
More filters
Journal ArticleDOI
TL;DR: These EAU guidelines are a short comprehensive overview of the updated guidelines of male infertility as recently published by the EAU and are also available in the National Guideline Clearinghouse ( www.guideline.gov/).

802 citations

Journal ArticleDOI
TL;DR: The factors responsible for Y chromosome deletions in spermatozoa remain unresolved but may be one facet of a central reproductive problem: controlling the amount of oxidative stress experienced by germ cells during their differentiation and maturation in the male reproductive tract.
Abstract: Recent advances in understanding of male infertility have implicated two major causative factors, oxidative stress and Y chromosome deletions. A major cause of oxidative stress appears to be the high rate of reactive oxygen species generation associated with the retention of excess residual cytoplasm in the sperm midpiece. Other possible causes include the redox cycling of xenobiotics, and antioxidant depletion or apoptosis. Oxidative stress induces peroxidative damage in the sperm plasma membrane and DNA damage in both the mitochondrial and nuclear genomes. Nuclear DNA damage in the germ line of the father may be associated with pathology in the offspring, including childhood cancer and infertility. Gene deletions on the non-recombining region of the Y chromosome account for the infertility observed in about 15% of patients with azoospermia and 5-10% of subjects with severe oligozoospermia. The Y chromosome is particularly susceptible to gene deletions because of the inability of the haploid genome to deploy recombination repair in retrieving lost genetic information. Aberrant recombination, defective chromatin packaging, abortive apoptosis and oxidative stress may all be involved in the aetiology of DNA damage in the germ line. The factors responsible for Y chromosome deletions in spermatozoa remain unresolved but may be one facet of a central reproductive problem: controlling the amount of oxidative stress experienced by germ cells during their differentiation and maturation in the male reproductive tract.

699 citations

Journal ArticleDOI
TL;DR: Large, international, and consortium-based whole-exome and whole-genome studies are the most promising approach for the discovery of the missing genetic aetiology of idiopathic male infertility.
Abstract: Male infertility is a multifactorial pathological condition affecting approximately 7% of the male population. The genetic landscape of male infertility is highly complex as semen and testis histological phenotypes are extremely heterogeneous, and at least 2,000 genes are involved in spermatogenesis. The highest frequency of known genetic factors contributing to male infertility (25%) is in azoospermia, but the number of identified genetic anomalies in other semen and aetiological categories is constantly growing. Genetic screening is relevant for its diagnostic value, clinical decision making, and appropriate genetic counselling. Anomalies in sex chromosomes have major roles in severe spermatogenic impairment. Autosome-linked gene mutations are mainly involved in central hypogonadism, monomorphic teratozoospermia or asthenozoospermia, congenital obstructive azoospermia, and familial cases of quantitative spermatogenic disturbances. Results from whole-genome association studies suggest a marginal role for common variants as causative factors; however, some of these variants can be important for pharmacogenetic purposes. Results of studies on copy number variations (CNVs) demonstrate a considerably higher CNV load in infertile patients than in normozoospermic men, whereas whole-exome analysis has proved to be a highly successful diagnostic tool in familial cases of male infertility. Despite such efforts, the aetiology of infertility remains unknown in about 40% of patients, and the discovery of novel genetic factors in idiopathic infertility is a major challenge for the field of androgenetics. Large, international, and consortium-based whole-exome and whole-genome studies are the most promising approach for the discovery of the missing genetic aetiology of idiopathic male infertility.

488 citations

Journal ArticleDOI
TL;DR: The most recent revision of the 1999 laboratory guidelines summarizes the results of a 'Best Practice Meeting' held in Florence (Italy) in October 2003 as discussed by the authors, and it was agreed that the basic 1999 protocol, based on two multiplex polymerase chain reactions each covering the three AZF regions, is still fully valid and appropriate for accurate diagnosis.
Abstract: Microdeletions of the Y chromosome are the second most frequent genetic cause of spermatogenetic failure in infertile men after the Klinefelter syndrome. The molecular diagnosis of Y-chromosomal microdeletions is routinely performed in the workup of male infertility in men with azoospermia or severe oligozoospermia. Since 1999, the European Academy of Andrology (EAA) and the European Molecular Genetics Quality Network (EMQN) support the improvement of the quality of the diagnostic assays by publication of the laboratory guidelines for molecular diagnosis of Y-chromosomal microdeletions and by offering external quality assessment trials. The present revision of the 1999 laboratory guidelines summarizes the results of a 'Best Practice Meeting' held in Florence (Italy) in October 2003. The basic protocol for microdeletion screening suggested in the 1999 guidelines proved to be very accurate, sensitive and robust. In the light of the recent advance in the knowledge of the Y chromosome sequence and of the mechanism of microdeletion it was agreed that the basic 1999 protocol, based on two multiplex polymerase chain reactions each covering the three AZF regions, is still fully valid and appropriate for accurate diagnosis.

449 citations

Journal ArticleDOI
TL;DR: The present revision of the 2004 laboratory guidelines summarizes all the clinical novelties related to the Y chromosome (classic, partial and gene‐specific deletions, genotype–phenotype correlations, methodological issues) and provides an update on the results of the quality control programme.
Abstract: The molecular diagnosis of Y-chromosomal microdeletions is a common routine genetic test which is part of the diagnostic workup of azoospermic and severe oligozoospermic men. Since 1999, the European Academy of Andrology (EAA) and the European Molecular Genetics Quality Network (EMQN) have been actively involved in supporting the improvement of the quality of the diagnostic assays by publication of the laboratory guidelines for molecular diagnosis of Y-chromosomal microdeletions and by offering external quality assessment trials. The present revision of the 2004 laboratory guidelines summarizes all the clinical novelties related to the Y chromosome (classic, partial and gene-specific deletions, genotype–phenotype correlations, methodological issues) and provides an update on the results of the quality control programme. These aspects also reflect the consensus of a large group of specialists present at a round table session during the recent Florence-Utah-Symposium on ‘Genetics of male infertility’ (Florence, 19–21 September, 2013). During the last 10 years the gr/gr deletion has been demonstrated as a significant risk factor for impaired sperm production. However, the screening for this deletion type in the routine diagnostic setting is still a debated issue among experts. The original basic protocol based on two multiplex polymerase chain reactions remains fully valid and appropriate for accurate diagnosis of complete AZF deletions and it requires only a minor modification in populations with a specific Y chromosome background. However, in light of novel data on genotype–phenotype correlations, the extension analysis for the AZFa and AZFb deletions is now routinely recommended. Novel methods and kits with excessively high number of markers do not improve the sensitivity of the test, may even complicate the interpretation of the results and are not recommended. Annual participation in an external quality control programme is strongly encouraged. The 12-year experience with the EMQN/EAA scheme has shown a steep decline in diagnostic (genotyping) error rate and a simultaneous improvement on reporting practice.

408 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is proposed that DNA methylation age measures the cumulative effect of an epigenetic maintenance system, and can be used to address a host of questions in developmental biology, cancer and aging research.
Abstract: It is not yet known whether DNA methylation levels can be used to accurately predict age across a broad spectrum of human tissues and cell types, nor whether the resulting age prediction is a biologically meaningful measure. I developed a multi-tissue predictor of age that allows one to estimate the DNA methylation age of most tissues and cell types. The predictor, which is freely available, was developed using 8,000 samples from 82 Illumina DNA methylation array datasets, encompassing 51 healthy tissues and cell types. I found that DNA methylation age has the following properties: first, it is close to zero for embryonic and induced pluripotent stem cells; second, it correlates with cell passage number; third, it gives rise to a highly heritable measure of age acceleration; and, fourth, it is applicable to chimpanzee tissues. Analysis of 6,000 cancer samples from 32 datasets showed that all of the considered 20 cancer types exhibit significant age acceleration, with an average of 36 years. Low age-acceleration of cancer tissue is associated with a high number of somatic mutations and TP53 mutations, while mutations in steroid receptors greatly accelerate DNA methylation age in breast cancer. Finally, I characterize the 353 CpG sites that together form an aging clock in terms of chromatin states and tissue variance. I propose that DNA methylation age measures the cumulative effect of an epigenetic maintenance system. This novel epigenetic clock can be used to address a host of questions in developmental biology, cancer and aging research.

4,233 citations

Journal Article
TL;DR: In this paper, the coding exons of the family of 518 protein kinases were sequenced in 210 cancers of diverse histological types to explore the nature of the information that will be derived from cancer genome sequencing.
Abstract: AACR Centennial Conference: Translational Cancer Medicine-- Nov 4-8, 2007; Singapore PL02-05 All cancers are due to abnormalities in DNA. The availability of the human genome sequence has led to the proposal that resequencing of cancer genomes will reveal the full complement of somatic mutations and hence all the cancer genes. To explore the nature of the information that will be derived from cancer genome sequencing we have sequenced the coding exons of the family of 518 protein kinases, ~1.3Mb DNA per cancer sample, in 210 cancers of diverse histological types. Despite the screen being directed toward the coding regions of a gene family that has previously been strongly implicated in oncogenesis, the results indicate that the majority of somatic mutations detected are “passengers”. There is considerable variation in the number and pattern of these mutations between individual cancers, indicating substantial diversity of processes of molecular evolution between cancers. The imprints of exogenous mutagenic exposures, mutagenic treatment regimes and DNA repair defects can all be seen in the distinctive mutational signatures of individual cancers. This systematic mutation screen and others have previously yielded a number of cancer genes that are frequently mutated in one or more cancer types and which are now anticancer drug targets (for example BRAF , PIK3CA , and EGFR ). However, detailed analyses of the data from our screen additionally suggest that there exist a large number of additional “driver” mutations which are distributed across a substantial number of genes. It therefore appears that cells may be able to utilise mutations in a large repertoire of potential cancer genes to acquire the neoplastic phenotype. However, many of these genes are employed only infrequently. These findings may have implications for future anticancer drug development.

2,737 citations

Journal ArticleDOI
TL;DR: Existing evidence supporting a new concept that poor semen quality, testis cancer, undescended testis and hypospadias are symptoms of one underlying entity, the testicular dysgenesis syndrome (TDS), which may be increasingly common due to adverse environmental influences is summarized.
Abstract: Numerous reports have recently focused on various aspects of adverse trends in male reproductive health, such as the rising incidence of testicular cancer; low and probably declining semen quality; high and possibly increasing frequencies of undescended testis and hypospadias; and an apparently growing demand for assisted reproduction. Due to specialization in medicine and different ages at presentation of symptoms, reproductive problems used to be analysed separately by various professional groups, e.g. paediatric endocrinologists, urologists, andrologists and oncologists. This article summarizes existing evidence supporting a new concept that poor semen quality, testis cancer, undescended testis and hypospadias are symptoms of one underlying entity, the testicular dysgenesis syndrome (TDS), which may be increasingly common due to adverse environmental influences. Experimental and epidemiological studies suggest that TDS is a result of disruption of embryonal programming and gonadal development during fetal life. Therefore, we recommend that future epidemiological studies on trends in male reproductive health should not focus on one symptom only, but be more comprehensive and take all aspects of TDS into account. Otherwise, important biological information may be lost.

2,096 citations

Journal ArticleDOI
TL;DR: This complete mtDNA tree includes previously published as well as newly identified haplogroups, is easily navigable, will be continuously and regularly updated in the future, and is online available at http://www.phylotree.org.
Abstract: Human mitochondrial DNA is widely used as tool in many fields including evolutionary anthropology and population history, medical genetics, genetic genealogy, and forensic science. Many applications require detailed knowledge about the phylogenetic relationship of mtDNA variants. Although the phylogenetic resolution of global human mtDNA diversity has greatly improved as a result of increasing sequencing efforts of complete mtDNA genomes, an updated overall mtDNA tree is currently not available. In order to facilitate a better use of known mtDNA variation, we have constructed an updated comprehensive phylogeny of global human mtDNA variation, based on both coding- and control region mutations. This complete mtDNA tree includes previously published as well as newly identified haplogroups, is easily navigable, will be continuously and regularly updated in the future, and is online available at http://www.phylotree.org. © 2008 Wiley-Liss, Inc.

1,628 citations