scispace - formally typeset
Search or ask a question
Author

Cuiying Dai

Bio: Cuiying Dai is an academic researcher from Xiangtan University. The author has contributed to research in topics: Fracture toughness & Digital image correlation. The author has an hindex of 13, co-authored 25 publications receiving 433 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The evolution of microhardness, fracture toughness and residual stress of an air plasma-sprayed thermal barrier coating system under thermal cycles was investigated by a modified Vickers indentation instrument coupled with three kinds of indentation models.
Abstract: The evolution of microhardness, fracture toughness and residual stress of an air plasma-sprayed thermal barrier coating system under thermal cycles was investigated by a modified Vickers indentation instrument coupled with three kinds of indentation models. The results show that fracture toughness on the top coating surface after thermal cycles changes from 0.64 to 3.67 MPa m 1/2 , and the corresponding residual stress near the indented region varies from − 36.8 to − 243 MPa. For the interface region of coating and bond coat, fracture toughness in the coating close to interface ranges from 0.11 to 0.81 MPa m 1/2 , and residual stress varies from − 5 to − 30 MPa, which are consistent with available data. For the lateral region of coating, fracture toughness and residual stress display strong gradient characteristics along the thickness direction due to the special layered structure.

63 citations

Journal ArticleDOI
TL;DR: In this paper, an acoustic emission technique was used to monitor the cracking behavior and fracture process of thermal barrier coatings subjected to tensile loading, and the fracture strength and interfacial shear strength were estimated as 45.73±3.92 MPa.
Abstract: article i nfo An acoustic emission technique was used to monitor the cracking behavior and fracture process of thermal barrier coatings subjected to tensile loading. Acoustic emission signals were extracted and preformed by fast Fourier transform, and their characteristic frequency spectrums and dominant bands were obtained to reveal fracture modes. Three different characteristic frequency bands were confirmed, corresponding to sub- strate deformation, surface vertical cracking and interface delamination, with the aid of scanning electronic microscopy observations. A map of the tensile failure mechanism of air plasma-sprayed thermal barrier coat- ings was established. The fracture strength and interfacial shear strength were estimated as 45.73±3.92 MPa

48 citations

Journal ArticleDOI
TL;DR: In this article, a thermal barrier coating system with plasma sprayed zirconia bonded by a MCrAlY layer to SUS304 stainless steel substrate was performed under tensile tests at 1000°C.
Abstract: Thermal barrier coatings (TBCs) have been extensively used in aircraft engines for improved durability and performance for more than fifteen years. In this paper, thermal barrier coating system with plasma sprayed zirconia bonded by a MCrAlY layer to SUS304 stainless steel substrate was performed under tensile tests at 1000°C. The crack nucleation, propagation behavior of the ceramic coatings in as received and oxidized conditions were observed by high-performance camera and discussed in detail. The relationship of the transverse crack numbers in the ceramic coating and tensile strain was recorded and used to describe crack propagation mechanism of thermal barrier coatings. It was found that the fracture/spallation locations of air plasma sprayed (APS) thermal barrier coating system mainly located within the ceramic coating close to the bond coat interface by scanning electron microscope (SEM) and energy dispersive X-Ray (EDX). The energy release rate and interface fracture toughness of APS TBCs system were evaluated by the aid of Suo–Hutchinson model. The calculations revealed that the energy release rate and fracture toughness ranged, respectively, from 22.15 J m−2 to 37.8 J m−2 and from 0.9 MPa m1/2 to 1.5 MPa m1/2. The results agree well with other experimental results.

44 citations

Journal ArticleDOI
TL;DR: In this article, the in-situ morphological evolution of displacement in pouch-type commercial lithium-ion batteries during multiple fifty-five electrochemical charging-discharging cycles was measured via digital image correlation technique.

44 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the thermo-mechanical buckling delamination failure characteristic of air plasma sprayed thermal barrier coatings (TBCs) under compression tests at high temperature.
Abstract: The primary intention of this work is to investigate the thermo-mechanical buckling delamination failure characteristic of air plasma sprayed thermal barrier coatings (TBCs) under compression tests at high temperature. The TBCs samples with a pre-delamination were firstly designed and they had been successfully prepared by air plasma sprayed technique. The main novelty of this paper is that the first work to validate and obtain three kinds of the interface failure forms in TBCs system during compression tests, i.e. buckling delamination, edge delamination and global buckling failure. The effects of the initial delamination length, temperature gradient and applied mechanical load on the delamination resistance of the TBCs system were discussed in detail. It is difficult to observe buckling delamination or edge delamination failure phenomena until the initial delamination length in TBCs reaches or exceeds 4 mm or more. For edge delamination failure, the interface fracture toughness ( Γ i II ), energy release rate ( G ss edge ) and stress intensity factor ( K II ) between the TBC/TGO interface were 35 J m − 2 , 38.8 J m − 2 and 0.97 MPa m at high temperature gradient, respectively. Using scanning electron microscopy (SEM) and energy dispersive X-ray (EDX), it was inferred that the delamination fracture located within the ceramic coating close to the TBC/TGO interface. The results agree well with other experimental and theoretical results.

41 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the volume changes occurring in state-of-the-art electrode materials, based on crystallographic studies, are analyzed and compared, and the reaction volumes of operating full cells (charge/discharge volumes) are determined from pressure-dependent open-circuit voltage measurements.
Abstract: Charge and discharge of lithium ion battery electrodes is accompanied by severe volume changes. In a confined space, the volume cannot expand, leading to significant pressures induced by local microstructural changes within the battery. While volume changes appear to be less critical in batteries with liquid electrolytes, they will be more critical in the case of lithium ion batteries with solid electrolytes and they will be even more critical and detrimental in the case of all-solid-state batteries with a lithium metal electrode. In this work we first summarize, compare, and analyze the volume changes occurring in state of the art electrode materials, based on crystallographic studies. A quantitative analysis follows that is based on the evaluation of the partial molar volume of lithium as a function of the degree of lithiation for different electrode materials. Second, the reaction volumes of operating full cells (“charge/discharge volumes”) are experimentally determined from pressure-dependent open-circuit voltage measurements. The resulting changes in the open-circuit voltage are in the order of 1 mV/100 MPa, are well measurable, and agree with changes observed in the crystallographic data. Third, the pressure changes within solid-state batteries are approximated under the assumption of incompressibility, i.e. for constant volume of the cell casing, and are compared to experimental data obtained from model-type full cells. In addition to the understanding of the occurring volume changes of electrode materials and resulting pressure changes in solid-state batteries, we propose “mechanical” blending of electrode materials to achieve better cycling performance when aiming at “zero-strain” electrodes.

431 citations

08 Jul 2010
TL;DR: In this paper, first-principles calculations for both amorphous and crystalline phases observed during lithiation of Si anodes were performed and the anisotropic elastic tensors as well as the homogenized Young's, shear, and bulk moduli and the Poisson's ratios were analyzed.
Abstract: Knowledge of the elastic properties of Li–Si alloys as a function of Li concentration is crucial in the development of reliable deformation and fracture mechanics models for Si anodes in Li-ion batteries. Here, we have studied these properties using first-principles calculations for both amorphous and crystalline phases observed during lithiation of Si anodes. In the case of crystalline alloys, we present the anisotropic elastic tensors as well as the homogenized Young's, shear, and bulk moduli and the Poisson's ratios. We find that while these moduli decrease in an approximately linear manner with increasing Li concentration leading to significant elastic softening (by about one order of magnitude) in both crystalline and amorphous systems, the Poisson's ratios remain in the range of 0.05–0.20 and 0.20–0.30 in the case of crystalline and amorphous systems, respectively. Further, for a given Li concentration, we find that the amorphous structures are elastically somewhat softer than their crystalline counterparts, the difference being more significant (about 30–40%) in Li-poor phases. Our results underscore the importance of including the concentration dependence of elastic constants in the analysis of stress and deformation fields during lithiation and de-lithiation of Si anodes.

324 citations

Journal ArticleDOI
TL;DR: In this article, the authors reviewed the research progress of the finite element modeling (FEM) on the study of the thermal insulation and associated failure problems of the TBCs and proposed a solution method based on the thermal-mechanical coupled technique.
Abstract: To understand the thermal insulation and failure problems of the thermal barrier coatings (TBCs) deeply is vital to evaluate the reliability and durability of the TBCs. Actually, experimental methods can not reflect the real case of the TBCs during its fabrication and service process. Finite element modeling (FEM) play an important role in studying these problems. Especially, FEM is very effective in calculating the thermal insulation and the fracture failure problems of the TBCs. In this paper, the research progress of the FEM on the study of the thermal insulation and associated failure problems of the TBCs has been reviewed. Firstly, from the aspect of the investigation of the heat insulation of the TBCs, the thermal analysis via FEM is widely used. The effective thermal conductivity, insulation temperature at different temperatures of the coating surface considering the thermal conduct, convection between the coating and the environment, heat radiation at high temperature and interfacial thermal resistance effect can be calculated by FEM. Secondly, the residual stress which is induced in the process of plasma spraying or caused by the thermal expansion coefficient mismatch between the coating and substrate and the temperature gradient variation under the actual service conditions can be also calculated via FEM. The solution method is based on the thermal–mechanical coupled technique. Thirdly, the failure problems of the TBCs under the actual service conditions can be calculated or simulated via FEM. The basic thought is using the fracture mechanic method. Previous investigation focused on the location of the maximum residual stress and try to find the possible failure positions of the TBCs, and to predict the possible failure modes of the TBCs. It belonged to static analysis. With the development of the FEM techniques, the virtual crack closure technique (VCCT), extended finite element method (XFEM) and cohesive zone model (CZM) have been used to simulate the crack propagation behavior of the TBCs. The failure patterns of the TBCs can be monitored timely and dynamically using these methods and the life prediction of the TBCs under the actual service conditions is expected to be realized eventually.

135 citations

Journal ArticleDOI
01 May 2018-Small
TL;DR: Although conversion-type anode materials have high theoretical capacities and abundant varieties, they suffer from multiple challenging obstacles to realize commercial applications, such as low reversible capacity, large voltage hysteresis, low initial coulombic efficiency, large volume changes, and low cycling stability.
Abstract: Sodium-ion batteries (SIBs) have huge potential for applications in large-scale energy storage systems due to their low cost and abundant sources. It is essential to develop new electrode materials for SIBs with high performance in terms of energy density, cycle life, and cost. Metal binary compounds that operate through conversion reactions hold promise as advanced anode materials for sodium storage. This Review highlights the storage mechanisms and advantages of conversion-type anode materials and summarizes their recent development. Although conversion-type anode materials have high theoretical capacities and abundant varieties, they suffer from multiple challenging obstacles to realize commercial applications, such as low reversible capacity, large voltage hysteresis, low initial coulombic efficiency, large volume changes, and low cycling stability. These key challenges are analyzed in this Review, together with emerging strategies to overcome them, including nanostructure and surface engineering, electrolyte optimization, and battery configuration designs. This Review provides pertinent insights into the prospects and challenges for conversion-type anode materials, and will inspire their further study.

123 citations