scispace - formally typeset
Search or ask a question
Author

Cunjun Ruan

Other affiliations: Chinese Academy of Sciences
Bio: Cunjun Ruan is an academic researcher from Beihang University. The author has contributed to research in topics: Terahertz radiation & Klystron. The author has an hindex of 13, co-authored 174 publications receiving 727 citations. Previous affiliations of Cunjun Ruan include Chinese Academy of Sciences.


Papers
More filters
Journal ArticleDOI
15 Feb 2019-Sensors
TL;DR: A low-cost, small size, and high-sensitivity microwave sensor using a Complementary Circular Spiral Resonator (CCSR), which operates at around 2.4 GHz, for identifying liquid samples and determining their dielectric constants is described.
Abstract: This paper describes a low-cost, small size, and high-sensitivity microwave sensor using a Complementary Circular Spiral Resonator (CCSR), which operates at around 2.4 GHz, for identifying liquid samples and determining their dielectric constants. The proposed sensor was fabricated and tested to effectively identify different liquids commonly used in daily life and determine the concentrations of various ethanol–water mixtures at by measuring the resonant frequency of the CCSR. Using acrylic paint, a square channel was drawn at the most sensitive position of the microwave sensor to ensure accuracy of the experiment. To estimate the dielectric constants of the liquids under test, an approximate model was established using a High-Frequency Simulator Structure (HFSS). The results obtained agree very well with the existing data. Two parabolic equations were calculated and fitted to identify unknown liquids and determine the concentrations of ethanol–water mixtures. Thus, our microwave sensor provides a method with high sensitivity and low consumption of material for liquid monitoring and determination, which proves the feasibility and broad prospect of this low-cost system in industrial application.

77 citations

Journal ArticleDOI
TL;DR: This work demonstrates generation of 0.2 mJ terahertz pulses in lithium niobate driven by Ti:sapphire laser pulses at room temperature using tilted pulse front technique and paves the way for mJ-level THz generation via optical rectification using existing Ti: sapphire Laser systems which can deliver Joule-level pulse energy with sub-50 fs pulse duration.
Abstract: We demonstrate generation of 0.2 mJ terahertz (THz) pulses in lithium niobate driven by Ti:sapphire laser pulses at room temperature. Employing tilted pulse front technique, the 800 nm-to-THz energy conversion efficiency has been optimized to 0.3% through chirping the sub-50 fs pump laser pulses to overcome multi-photon absorption and to extend effective interaction length for phase matching. Our approach paves the way for mJ-level THz generation via optical rectification using existing Ti:sapphire laser systems which can deliver Joule-level pulse energy with sub-50 fs pulse duration.

72 citations

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate the generation of circularly polarized terahertz waves in cascade spintronic tera-hertz emitters via delicately engineering the amplitudes, applied magnetic field directions, and phase differences in two-stage terahethertz beams and implement the manipulation of the chirality, azimuthal angle, and ellipticity of the radiated broadband teraherstz waves.
Abstract: Polarization shaped terahertz sources play a key factor in terahertz wireless communications, biological sensing, imaging, coherent control in fundamental sciences, and so on. Recently developed spintronic terahertz emitters have been considered as one of the next-generation promising high performance broadband terahertz sources. However, until now, polarization control, especially for twisting the circularly polarized terahertz waves at the spintronic terahertz source, has not yet been systematically explored and experimentally achieved. In this work, we not only demonstrate the generation of circularly polarized terahertz waves in cascade spintronic terahertz emitters via delicately engineering the amplitudes, applied magnetic field directions, and phase differences in two-stage terahertz beams but also implement the manipulation of the chirality, azimuthal angle, and ellipticity of the radiated broadband terahertz waves. We believe our work can help with further understanding of the ultrafast optical magnetic physics and may have valuable contributions for developing advance terahertz sources and optospintronic devices.

49 citations

Journal ArticleDOI
TL;DR: In this paper, a multigap extended output cavity was designed by 3D simulations, which served as the output cavity for a W-band sheet-beam extended interaction klystron (SBEIK).
Abstract: In this paper, a multigap extended output cavity was designed by 3-D simulations, which served as the output cavity for a W-band sheet-beam extended interaction klystron (SBEIK). In our numerical design, the circuit dimensions were systematically optimized by parametric finite-difference time-domain simulations, and the equivalent circuit for the output cavity was also analyzed. The proper external loading was selected by using a region of loss in 3-D, and the output power was optimized. The results were verified by using the coupler and the waveguide. The 2π mode of the optimized five-gap extended output cavities had an ohmic Q (Q0) of 1343.5, an external Q (Qe) of 501.6, and a loaded Q (QL) of 365.2 at 94.5 GHz. The 3-D particle-in-cell simulations predict that the output cavity of the SBEIK (75 kV and 4 A) can stably produce more than 50 kW of output power using a prebunched beam.

43 citations


Cited by
More filters
01 Jan 2016
TL;DR: In this paper, the authors present the principles of optics electromagnetic theory of propagation interference and diffraction of light, which can be used to find a good book with a cup of coffee in the afternoon, instead of facing with some infectious bugs inside their computer.
Abstract: Thank you for reading principles of optics electromagnetic theory of propagation interference and diffraction of light. As you may know, people have search hundreds times for their favorite novels like this principles of optics electromagnetic theory of propagation interference and diffraction of light, but end up in harmful downloads. Rather than enjoying a good book with a cup of coffee in the afternoon, instead they are facing with some infectious bugs inside their computer.

2,213 citations

01 Jan 2017
TL;DR: The 2017 roadmap of terahertz frequency electromagnetic radiation (100 GHz-30 THz) as mentioned in this paper provides a snapshot of the present state of THz science and technology in 2017, and provides an opinion on the challenges and opportunities that the future holds.
Abstract: Science and technologies based on terahertz frequency electromagnetic radiation (100 GHz–30 THz) have developed rapidly over the last 30 years. For most of the 20th Century, terahertz radiation, then referred to as sub-millimeter wave or far-infrared radiation, was mainly utilized by astronomers and some spectroscopists. Following the development of laser based terahertz time-domain spectroscopy in the 1980s and 1990s the field of THz science and technology expanded rapidly, to the extent that it now touches many areas from fundamental science to 'real world' applications. For example THz radiation is being used to optimize materials for new solar cells, and may also be a key technology for the next generation of airport security scanners. While the field was emerging it was possible to keep track of all new developments, however now the field has grown so much that it is increasingly difficult to follow the diverse range of new discoveries and applications that are appearing. At this point in time, when the field of THz science and technology is moving from an emerging to a more established and interdisciplinary field, it is apt to present a roadmap to help identify the breadth and future directions of the field. The aim of this roadmap is to present a snapshot of the present state of THz science and technology in 2017, and provide an opinion on the challenges and opportunities that the future holds. To be able to achieve this aim, we have invited a group of international experts to write 18 sections that cover most of the key areas of THz science and technology. We hope that The 2017 Roadmap on THz science and technology will prove to be a useful resource by providing a wide ranging introduction to the capabilities of THz radiation for those outside or just entering the field as well as providing perspective and breadth for those who are well established. We also feel that this review should serve as a useful guide for government and funding agencies.

690 citations

Journal Article
TL;DR: Spatially separate the spin dynamics using Ni/Ru/Fe magnetic trilayers and surprisingly find that optically induced demagnetization of the Ni layer transiently enhances the magnetizations of the Fe layer when the two layer magnetizations are initially aligned parallel.
Abstract: Uncovering the physical mechanisms that govern ultrafast charge and spin dynamics is crucial for understanding correlated matter as well as the fundamental limits of ultrafast spin-based electronics. Spin dynamics in magnetic materials can be driven by ultrashort light pulses, resulting in a transient drop in magnetization within a few hundred femtoseconds. However, a full understanding of femtosecond spin dynamics remains elusive. Here we spatially separate the spin dynamics using Ni/Ru/Fe magnetic trilayers, where the Ni and Fe layers can be ferro- or antiferromagnetically coupled. By exciting the layers with a laser pulse and probing the magnetization response simultaneously but separately in Ni and Fe, we surprisingly find that optically induced demagnetization of the Ni layer transiently enhances the magnetization of the Fe layer when the two layer magnetizations are initially aligned parallel. Our observations are explained by a laser-generated superdiffusive spin current between the layers.

262 citations

01 Aug 1986
TL;DR: In this article, a comprehensive theory of the cyclotron resonance maser (CRM) interaction in a circular waveguide is presented, and the conditions for maximum temporal and spatial growth rates are shown.
Abstract: This paper presents a comprehensive theory of the cyclotron resonance maser (CRM) interaction in a circular waveguide. The kinetic theory is used to derive the dispersion relationships for both TE and TM modes. The TE mode case has been investigated by several authors, but there has been comparatively little work on the TM mode case. However, the TM mode interaction competes effectively with the TE mode interaction at relativistic electron energies. The conditions for maximum temporal and spatial growth rates are shown. The TM mode growth rates are found to vanish when the RF wave group velocity equals the beam axial velocity (‘grazing incidence’). The single particle theory is used to derive a compact set of self-consistent non-linear equations for the TE and TM mode interactions. These equations are particularly appropriate for the cyclotron auto-resonance maser (CARM) regime but applicability extends to other regimes as well. The conditions for optimum efficiency are investigated for oscillator and amp...

186 citations

Journal ArticleDOI
TL;DR: In this article, an explanation of the physical meaning of the electron propagator's poles and residues is followed by a discussion of its couplings to more complicated propagators and connections between Dyson orbitals and transition probabilities.
Abstract: Electron propagator theory provides a practical means of calculating electron binding energies, Dyson orbitals, and ground-state properties from first principles. This approach to ab initio electronic structure theory also facilitates the interpretation of its quantitative predictions in terms of concepts that closely resemble those of one-electron theories. An explanation of the physical meaning of the electron propagator's poles and residues is followed by a discussion of its couplings to more complicated propagators. These relationships are exploited in superoperator theory and lead to a compact form of the electron propagator that is derived by matrix partitioning. Expressions for reference-state properties, relationships to the extended Koopmans's theorem technique for evaluating electron binding energies, and connections between Dyson orbitals and transition probabilities follow from this discussion. The inverse form of the Dyson equation for the electron propagator leads to a strategy for obtaining electron binding energies and Dyson orbitals that generalizes the Hartree–Fock equations through the introduction of the self-energy operator. All relaxation and correlation effects reside in this operator, which has an energy-dependent, nonlocal form that is systematically improvable. Perturbative arguments produce several, convenient (e.g. partial third order, outer valence Green's function, and second-order, transition-operator) approximations for the evaluation of valence ionization energies, electron affinities, and core ionization energies. Renormalized approaches based on Hartree–Fock or approximate Brueckner orbitals are employed when correlation effects become qualitatively important. Reference-state total energies based on contour integrals in the complex plane and gradients of electron binding energies enable exploration of final-state potential energy surfaces. © 2012 John Wiley & Sons, Ltd.

172 citations