scispace - formally typeset
Search or ask a question
Author

Curt Covey

Bio: Curt Covey is an academic researcher from Lawrence Livermore National Laboratory. The author has contributed to research in topics: Climate model & Climate change. The author has an hindex of 27, co-authored 83 publications receiving 8550 citations. Previous affiliations of Curt Covey include University of Miami & National Center for Atmospheric Research.


Papers
More filters
Journal ArticleDOI
TL;DR: The Coupled Model Intercomparison Project (CMIP3) dataset as discussed by the authors is the largest and most comprehensive international coupled climate model experiment and multimodel analysis effort ever attempted.
Abstract: A coordinated set of global coupled climate model [atmosphere–ocean general circulation model (AOGCM)] experiments for twentieth- and twenty-first-century climate, as well as several climate change commitment and other experiments, was run by 16 modeling groups from 11 countries with 23 models for assessment in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). Since the assessment was completed, output from another model has been added to the dataset, so the participation is now 17 groups from 12 countries with 24 models. This effort, as well as the subsequent analysis phase, was organized by the World Climate Research Programme (WCRP) Climate Variability and Predictability (CLIVAR) Working Group on Coupled Models (WGCM) Climate Simulation Panel, and constitutes the third phase of the Coupled Model Intercomparison Project (CMIP3). The dataset is called the WCRP CMIP3 multimodel dataset, and represents the largest and most comprehensive international global coupled climate model experiment and multimodel analysis effort ever attempted. As of March 2007, the Program for Climate Model Diagnostics and Intercomparison (PCMDI) has collected, archived, and served roughly 32 TB of model data. With oversight from the panel, the multimodel data were made openly available from PCMDI for analysis and academic applications. Over 171 TB of data had been downloaded among the more than 1000 registered users to date. Over 200 journal articles, based in part on the dataset, have been published so far. Though initially aimed at the IPCC AR4, this unique and valuable resource will continue to be maintained for at least the next several years. Never before has such an extensive set of climate model simulations been made available to the international climate science community for study. The ready access to the multimodel dataset opens up these types of model analyses to researchers, including students, who previously could not obtain state-of-the-art climate model output, and thus represents a new era in climate change research. As a direct consequence, these ongoing studies are increasing the body of knowledge regarding our understanding of how the climate system currently works, and how it may change in the future.

2,759 citations

Journal ArticleDOI
TL;DR: Physics of Climate as mentioned in this paper is a suitable text for at least part of a general circulation course and the quantity and quality of information in this book are such that anyone involved in the study of the atmosphere or climate will wish to have it handy.
Abstract: Physics of Climate is a suitable text for at least part of a general circulation course. The quantity and quality of information in this book are such that anyone involved in the study of the atmosphere or climate will wish to have it handy. In particular, anyone working with a general circulation model will want to see how his model compares with the observed world. Eight chapters are the core of the text. They cover: data description; observed states of the atmosphere, ocean, and cryosphere; exchanges between the atmosphere and the surface; and the budgets of water, angular momentum, and energy.

2,030 citations

Journal ArticleDOI
TL;DR: The Atmospheric Model Intercomparison Project (AMIP), initiated in 1989 under the auspices of the World Climate Research Programme, undertook the systematic validation and diagnosis of the performance of atmospheric general circulation models.
Abstract: The Atmospheric Model Intercomparison Project (AMIP), initiated in 1989 under the auspices of the World Climate Research Programme, undertook the systematic validation, diagnosis, and intercomparison of the performance of atmospheric general circulation models. For this purpose all models were required to simulate the evolution of the climate during the decade 1979—88, subject to the observed monthly average temperature and sea ice and a common prescribed atmospheric CO2 concentration and solar constant. By 1995, 31 modeling groups, representing virtually the entire international atmospheric modeling community, had contributed the required standard output of the monthly means of selected statistics. These data have been analyzed by the participating modeling groups, by the Program for Climate Model Diagnosis and Intercomparison, and by the more than two dozen AMIP diagnostic subprojects that have been established to examine specific aspects of the models' performance. Here the analysis and valida...

813 citations

Journal ArticleDOI
TL;DR: The Coupled Model Intercomparison Project (CMIP) was established to study and intercompare climate simulations made with coupled ocean-atmosphere-cryosphere-land GCMs as mentioned in this paper.
Abstract: The Coupled Model Intercomparison Project (CMIP) was established to study and intercompare climate simulations made with coupled ocean-atmosphere-cryosphere-land GCMs. There are two main phases (CMIP1 and CMIP2), which study, respectively, 1) the ability of models to simulate current climate, and 2) model simulations of climate change due to an idealized change in forcing (a 1% per year CO2 increase). Results from a number of CMIP projects were reported at the first CMIP Workshop held in Melbourne, Australia, in October 1998. Some recent advances in global coupled modeling related to CMIP were also reported. Presentations were based on preliminary unpublished results. Key outcomes from the workshop were that 1) many observed aspects of climate variability are simulated in global coupled models including the North Atlantic oscillation and its linkages to North Atlantic SSTs, El Nino-like events, and monsoon interannual variability; 2) the amplitude of both high- and low-frequency global mean surface temperature variability in many global coupled models is less than that observed, with the former due in part to simulated ENSO in the models being generally weaker than observed, and the latter likely to be at least partially due to the uncertainty in the estimates of past radiative forcing; 3) an El Nino-like pattern in the mean SST response with greater surface warming in the eastern equatorial Pacific than the western equatorial Pacific is found by a number of models in global warming climate change experiments, but other models have a more spatially uniform or even a La Nina-like, response; 4) flux adjustment, by definition, improves the simulation of mean present-day climate over oceans, does not guarantee a drift-free climate, but can produce a stable base state in some models to enable very long term (1000 yr and longer) integrations-in these models it does not appear to have a major effect on model processes or model responses to increasing CO2; and 5) recent multicentury integrations show that a stable surface climate can be attained without flux adjustment (though still with some systematic simulation errors).

442 citations

Journal ArticleDOI
10 Jun 2003
TL;DR: The Coupled Model Intercomparison Project (CMIP) collects output from global coupled ocean-atmosphere general circulation models (coupled GCMs) among other uses, such models are employed both to detect anthropogenic effects in the climate record of the past century and to project future climatic changes due to human production of greenhouse gases and aerosols as discussed by the authors.
Abstract: The Coupled Model Intercomparison Project (CMIP) collects output from global coupled ocean–atmosphere general circulation models (coupled GCMs) Among other uses, such models are employed both to detect anthropogenic effects in the climate record of the past century and to project future climatic changes due to human production of greenhouse gases and aerosols CMIP has archived output from both constant forcing (“control run”) and perturbed (1% per year increasing atmospheric carbon dioxide) simulations This report summarizes results form 18 CMIP models A third of the models refrain from employing ad hoc flux adjustments at the ocean–atmosphere interface The new generation of non-flux-adjusted control runs are nearly as stable as—and agree with observations nearly as well as—the flux-adjusted models Both flux-adjusted and non-flux-adjusted models simulate an overall level of natural internal climate variability that is within the bounds set by observations These developments represent significant progress in the state of the art of climate modeling since the Second (1995) Scientific Assessment Report of the Intergovernmental Panel on Climate Change (IPCC; see Gates et al [Gates, WL, et al, 1996 Climate models—Evaluation Climate Climate 1995: The Science of Climate Change, Houghton, JT, et al (Eds), Cambridge Univ Press, pp 229–284]) In the increasing-CO2 runs, differences between different models, while substantial, are not as great as one might expect from earlier assessments that relied on equilibrium climate sensitivity

386 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The fifth phase of the Coupled Model Intercomparison Project (CMIP5) will produce a state-of-the- art multimodel dataset designed to advance the authors' knowledge of climate variability and climate change.
Abstract: The fifth phase of the Coupled Model Intercomparison Project (CMIP5) will produce a state-of-the- art multimodel dataset designed to advance our knowledge of climate variability and climate change. Researchers worldwide are analyzing the model output and will produce results likely to underlie the forthcoming Fifth Assessment Report by the Intergovernmental Panel on Climate Change. Unprecedented in scale and attracting interest from all major climate modeling groups, CMIP5 includes “long term” simulations of twentieth-century climate and projections for the twenty-first century and beyond. Conventional atmosphere–ocean global climate models and Earth system models of intermediate complexity are for the first time being joined by more recently developed Earth system models under an experiment design that allows both types of models to be compared to observations on an equal footing. Besides the longterm experiments, CMIP5 calls for an entirely new suite of “near term” simulations focusing on recent decades...

12,384 citations

01 Jan 2007
TL;DR: Drafting Authors: Neil Adger, Pramod Aggarwal, Shardul Agrawala, Joseph Alcamo, Abdelkader Allali, Oleg Anisimov, Nigel Arnell, Michel Boko, Osvaldo Canziani, Timothy Carter, Gino Casassa, Ulisses Confalonieri, Rex Victor Cruz, Edmundo de Alba Alcaraz, William Easterling, Christopher Field, Andreas Fischlin, Blair Fitzharris.
Abstract: Drafting Authors: Neil Adger, Pramod Aggarwal, Shardul Agrawala, Joseph Alcamo, Abdelkader Allali, Oleg Anisimov, Nigel Arnell, Michel Boko, Osvaldo Canziani, Timothy Carter, Gino Casassa, Ulisses Confalonieri, Rex Victor Cruz, Edmundo de Alba Alcaraz, William Easterling, Christopher Field, Andreas Fischlin, Blair Fitzharris, Carlos Gay García, Clair Hanson, Hideo Harasawa, Kevin Hennessy, Saleemul Huq, Roger Jones, Lucka Kajfež Bogataj, David Karoly, Richard Klein, Zbigniew Kundzewicz, Murari Lal, Rodel Lasco, Geoff Love, Xianfu Lu, Graciela Magrín, Luis José Mata, Roger McLean, Bettina Menne, Guy Midgley, Nobuo Mimura, Monirul Qader Mirza, José Moreno, Linda Mortsch, Isabelle Niang-Diop, Robert Nicholls, Béla Nováky, Leonard Nurse, Anthony Nyong, Michael Oppenheimer, Jean Palutikof, Martin Parry, Anand Patwardhan, Patricia Romero Lankao, Cynthia Rosenzweig, Stephen Schneider, Serguei Semenov, Joel Smith, John Stone, Jean-Pascal van Ypersele, David Vaughan, Coleen Vogel, Thomas Wilbanks, Poh Poh Wong, Shaohong Wu, Gary Yohe

7,720 citations

Journal ArticleDOI
TL;DR: In this article, a diagram has been devised that can provide a concise statistical summary of how well patterns match each other in terms of their correlation, their root-mean-square difference, and the ratio of their variances.
Abstract: A diagram has been devised that can provide a concise statistical summary of how well patterns match each other in terms of their correlation, their root-mean-square difference, and the ratio of their variances. Although the form of this diagram is general, it is especially useful in evaluating complex models, such as those used to study geophysical phenomena. Examples are given showing that the diagram can be used to summarize the relative merits of a collection of different models or to track changes in performance of a model as it is modified. Methods are suggested for indicating on these diagrams the statistical significance of apparent differences and the degree to which observational uncertainty and unforced internal variability limit the expected agreement between model-simulated and observed behaviors. The geometric relationship between the statistics plotted on the diagram also provides some guidance for devising skill scores that appropriately weight among the various measures of pattern correspondence.

5,762 citations

Journal ArticleDOI
TL;DR: In this article, the authors present the background and rationale for the new structure of CMIP, provides a detailed description of the DECK and CMIP6 historical simulations, and includes a brief introduction to the 21-CMIP6-Endorsed MIPs.
Abstract: . By coordinating the design and distribution of global climate model simulations of the past, current, and future climate, the Coupled Model Intercomparison Project (CMIP) has become one of the foundational elements of climate science. However, the need to address an ever-expanding range of scientific questions arising from more and more research communities has made it necessary to revise the organization of CMIP. After a long and wide community consultation, a new and more federated structure has been put in place. It consists of three major elements: (1) a handful of common experiments, the DECK (Diagnostic, Evaluation and Characterization of Klima) and CMIP historical simulations (1850–near present) that will maintain continuity and help document basic characteristics of models across different phases of CMIP; (2) common standards, coordination, infrastructure, and documentation that will facilitate the distribution of model outputs and the characterization of the model ensemble; and (3) an ensemble of CMIP-Endorsed Model Intercomparison Projects (MIPs) that will be specific to a particular phase of CMIP (now CMIP6) and that will build on the DECK and CMIP historical simulations to address a large range of specific questions and fill the scientific gaps of the previous CMIP phases. The DECK and CMIP historical simulations, together with the use of CMIP data standards, will be the entry cards for models participating in CMIP. Participation in CMIP6-Endorsed MIPs by individual modelling groups will be at their own discretion and will depend on their scientific interests and priorities. With the Grand Science Challenges of the World Climate Research Programme (WCRP) as its scientific backdrop, CMIP6 will address three broad questions: – How does the Earth system respond to forcing? – What are the origins and consequences of systematic model biases? – How can we assess future climate changes given internal climate variability, predictability, and uncertainties in scenarios? This CMIP6 overview paper presents the background and rationale for the new structure of CMIP, provides a detailed description of the DECK and CMIP6 historical simulations, and includes a brief introduction to the 21 CMIP6-Endorsed MIPs.

4,192 citations

Journal Article
TL;DR: In this article, the authors present a document, redatto, voted and pubblicato by the Ipcc -Comitato intergovernativo sui cambiamenti climatici - illustra la sintesi delle ricerche svolte su questo tema rilevante.
Abstract: Cause, conseguenze e strategie di mitigazione Proponiamo il primo di una serie di articoli in cui affronteremo l’attuale problema dei mutamenti climatici. Presentiamo il documento redatto, votato e pubblicato dall’Ipcc - Comitato intergovernativo sui cambiamenti climatici - che illustra la sintesi delle ricerche svolte su questo tema rilevante.

4,187 citations