scispace - formally typeset
Search or ask a question
Author

Curt R. Fischer

Bio: Curt R. Fischer is an academic researcher from Stanford University. The author has contributed to research in topics: Escherichia coli & Metabolomics. The author has an hindex of 22, co-authored 56 publications receiving 2809 citations. Previous affiliations of Curt R. Fischer include University of California & Tokyo Institute of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: The characterized library of promoters is used to assess the impact of phosphoenolpyruvate carboxylase levels on growth yield and deoxy-xylulose-P synthase Levels on lycopene production and is illustrated as being generalizable to eukaryotic organisms and thus constitutes an integral platform for functional genomics, synthetic biology, and metabolic engineering endeavors.
Abstract: Gene function is typically evaluated by sampling the continuum of gene expression at only a few discrete points corresponding to gene knockout or overexpression. We argue that this characterization is incomplete and present a library of engineered promoters of varying strengths obtained through mutagenesis of a constitutive promoter. A multifaceted characterization of the library, especially at the single-cell level to ensure homogeneity, permitted quantitative assessment correlating the effect of gene expression levels to improved growth and product formation phenotypes in Escherichia coli. Integration of these promoters into the chromosome can allow for a quantitative accurate assessment of genetic control. To this end, we used the characterized library of promoters to assess the impact of phosphoenolpyruvate carboxylase levels on growth yield and deoxy-xylulose-P synthase levels on lycopene production. The multifaceted characterization of promoter strength enabled identification of optimal expression levels for ppc and dxs, which maximized the desired phenotype. Additionally, in a strain preengineered to produce lycopene, the response to deoxy-xylulose-P synthase levels was linear at all levels tested, indicative of a rate-limiting step, unlike the parental strain, which exhibited an optimum expression level, illustrating that optimal gene expression levels are variable and dependent on the genetic background of the strain. This promoter library concept is illustrated as being generalizable to eukaryotic organisms (Saccharomyces cerevisiae) and thus constitutes an integral platform for functional genomics, synthetic biology, and metabolic engineering endeavors.

892 citations

Journal ArticleDOI
TL;DR: This paper examines the prospects for bioproduction of four second-generation biofuels (n-butanol, 2- butanol, terpenoids, or higher lipids) from four feedstocks (sugars and starches, lignocellulosics, syngas, and atmospheric carbon dioxide) and tests seven fast-growing host organisms for tolerance to production stresses.

409 citations

Journal ArticleDOI
TL;DR: The detailed characterization of the yeast promoter collection comprising 11 mutants of the strong constitutive Saccharomyces cerevisiae TEF1 promoter is provided, allowing detailed genotype-phenotype characterizations.
Abstract: The strong overexpression or complete deletion of a gene gives only limited information about its control over a certain phenotype or pathway. Gene function studies based on these methods are therefore incomplete. To effect facile manipulation of gene expression across a full continuum of possible expression levels, we recently created a library of mutant promoters. Here, we provide the detailed characterization of our yeast promoter collection comprising 11 mutants of the strong constitutive Saccharomyces cerevisiae TEF1 promoter. The activities of the mutant promoters range between about 8% and 120% of the activity of the unmutated TEF1 promoter. The differences in reporter gene expression in the 11 mutants were independent of the carbon source used, and real-time PCR confirmed that these differences were due to varying levels of transcription (i.e., caused by varying promoter strengths). In addition to a CEN/ARS plasmid-based promoter collection, we also created promoter replacement cassettes. They enable genomic integration of our mutant promoter collection upstream of any given yeast gene, allowing detailed genotype-phenotype characterizations. To illustrate the utility of the method, the GPD1 promoter of S. cerevisiae was replaced by five TEF1 promoter mutants of different strengths, which allowed analysis of the impact of glycerol 3-phosphate dehydrogenase activity on the glycerol yield.

239 citations

Journal ArticleDOI
TL;DR: Cessation of major outer membrane protein OmpC production and alteration of lipopolysaccharide composition enabled E. coli O157:H7 to escape PP01 infection.
Abstract: The interaction between Escherichia coli O157:H7 and its specific bacteriophage PP01 was investigated in chemostat continuous culture. Following the addition of bacteriophage PP01, E. coli O157:H7 cell lysis was observed by over 4 orders of magnitude at a dilution rate of 0.876 h−1 and by 3 orders of magnitude at a lower dilution rate (0.327 h−1). However, the appearance of a series of phage-resistant E. coli isolates, which showed a low efficiency of plating against bacteriophage PP01, led to an increase in the cell concentration in the culture. The colony shape, outer membrane protein expression, and lipopolysaccharide production of each escape mutant were compared. Cessation of major outer membrane protein OmpC production and alteration of lipopolysaccharide composition enabled E. coli O157:H7 to escape PP01 infection. One of the escape mutants of E. coli O157:H7 which formed a mucoid colony (Mu) on Luria-Bertani agar appeared 56 h postincubation at a dilution rate of 0.867 h−1 and persisted until the end of the experiment (∼200 h). Mu mutant cells could coexist with bacteriophage PP01 in batch culture. Concentrations of the Mu cells and bacteriophage PP01 increased together. The appearance of mutant phage, which showed a different host range among the O157:H7 escape mutants than wild-type PP01, was also detected in the chemostat culture. Thus, coevolution of phage and E. coli O157:H7 proceeded as a mutual arms race in chemostat continuous culture.

190 citations

Journal ArticleDOI
TL;DR: It is shown that N-hydroxy-pipecolic acid metabolites are mobile defense signals produced at the site of bacterial infection and establish and amplify defense in uninfected, distal tissues and suggests that the N-OH-Pip pathway is a promising target for metabolic engineering to enhance disease resistance.
Abstract: Systemic acquired resistance (SAR) is a global response in plants induced at the site of infection that leads to long-lasting and broad-spectrum disease resistance at distal, uninfected tissues. Despite the importance of this priming mechanism, the identity and complexity of defense signals that are required to initiate SAR signaling is not well understood. In this paper, we describe a metabolite, N-hydroxy-pipecolic acid (N-OH-Pip) and provide evidence that this mobile molecule plays a role in initiating SAR signal transduction in Arabidopsis thaliana. We demonstrate that FLAVIN-DEPENDENT MONOOXYGENASE 1 (FMO1), a key regulator of SAR-associated defense priming, can synthesize N-OH-Pip from pipecolic acid in planta, and exogenously applied N-OH-Pip moves systemically in Arabidopsis and can rescue the SAR-deficiency of fmo1 mutants. We also demonstrate that N-OH-Pip treatment causes systemic changes in the expression of pathogenesis-related genes and metabolic pathways throughout the plant and enhances resistance to a bacterial pathogen. This work provides insight into the chemical nature of a signal for SAR and also suggests that the N-OH-Pip pathway is a promising target for metabolic engineering to enhance disease resistance.

171 citations


Cited by
More filters
Book
01 Jan 2006
TL;DR: Animal Models and Therapy, Directed Differentiation and Characterization of Genetically Modified Embryonic Stem Cells for Therapy, and Use of Differentiating Embryonics Stem cells in the Parkinsonian Mouse Model are reviewed.
Abstract: Isolation and Maintenance.- Isolation and Differentiation of Medaka Embryonic Stem Cells.- Maintenance of Chicken Embryonic Stem Cells In Vitro.- Derivation and Culture of Mouse Trophoblast Stem Cells In Vitro.- Derivation, Maintenance, and Characterization of Rat Embryonic Stem Cells In Vitro.- Derivation, Maintenance, and Induction of the Differentiation In Vitro of Equine Embryonic Stem Cells.- Generation and Characterization of Monkey Embryonic Stem Cells.- Derivation and Propagation of Embryonic Stem Cells in Serum- and Feeder-Free Culture.- Signaling in Embryonic Stem Cell Differentiation.- Internal Standards in Differentiating Embryonic Stem Cells In Vitro.- Matrix Assembly, Cell Polarization, and Cell Survival.- Phosphoinositides, Inositol Phosphates, and Phospholipase C in Embryonic Stem Cells.- Cripto Signaling in Differentiating Embryonic Stem Cells.- The Use of Embryonic Stem Cells to Study Hedgehog Signaling.- Transfection and Promoter Analysis in Embryonic Stem Cells.- SAGE Analysis to Identify Embryonic Stem Cell-Predominant Transcripts.- Utilization of Digital Differential Display to Identify Novel Targets of Oct3/4.- Gene Silencing Using RNA Interference in Embryonic Stem Cells.- Genetic Manipulation of Embryonic Stem Cells.- Efficient Transfer of HSV-1 Amplicon Vectors Into Embryonic Stem Cells and Their Derivatives.- Lentiviral Vector-Mediated Gene Transfer in Embryonic Stem Cells.- Use of the Cytomegalovirus Promoter for Transient and Stable Transgene Expression in Mouse Embryonic Stem Cells.- Use of Simian Immunodeficiency Virus Vectors for Simian Embryonic Stem Cells.- Generation of Green Fluorescent Protein-Expressing Monkey Embryonic Stem Cells.- DNA Damage Response and Mutagenesis in Mouse Embryonic Stem Cells.- Ultraviolet-Induced Apoptosis in Embryonic Stem Cells In Vitro.- Use of Embryonic Stem Cells in Pharmacological and Toxicological Screens.- Use of Differentiating Embryonic Stem Cells in Pharmacological Studies.- Embryonic Stem Cells as a Source of Differentiated Neural Cells for Pharmacological Screens.- Use of Murine Embryonic Stem Cells in Embryotoxicity Assays.- Use of Chemical Mutagenesis in Mouse Embryonic Stem Cells.- Epigenetic Analysis of Embryonic Stem Cells.- Nuclear Reprogramming of Somatic Nucleus Hybridized With Embryonic Stem Cells by Electrofusion.- Methylation in Embryonic Stem Cells In Vitro.- Tumor-Like Properties.- Identification of Genes Involved in Tumor-Like Properties of Embryonic Stem Cells.- In Vivo Tumor Formation From Primate Embryonic Stem Cells.- Animal Models and Therapy.- Directed Differentiation and Characterization of Genetically Modified Embryonic Stem Cells for Therapy.- Use of Differentiating Embryonic Stem Cells in the Parkinsonian Mouse Model.

3,665 citations

Journal ArticleDOI
TL;DR: The de novo engineering of genetic circuits, biological modules and synthetic pathways is beginning to address these crucial problems and is being used in related practical applications.
Abstract: Synthetic biology is bringing together engineers and biologists to design and build novel biomolecular components, networks and pathways, and to use these constructs to rewire and reprogram organisms. These re-engineered organisms will change our lives over the coming years, leading to cheaper drugs, 'green' means to fuel our cars and targeted therapies for attacking 'superbugs' and diseases, such as cancer. The de novo engineering of genetic circuits, biological modules and synthetic pathways is beginning to address these crucial problems and is being used in related practical applications.

1,247 citations

Journal ArticleDOI
TL;DR: Directed evolution studies have shown how rapidly some proteins can evolve under strong selection pressures and, because the entire 'fossil record' of evolutionary intermediates is available for detailed study, they have provided new insight into the relationship between sequence and function.
Abstract: Directed evolution circumvents our profound ignorance of how a protein's sequence encodes its function by using iterative rounds of random mutation and artificial selection to discover new and useful proteins. Proteins can be tuned to adapt to new functions or environments by simple adaptive walks involving small numbers of mutations. Directed evolution studies have shown how rapidly some proteins can evolve under strong selection pressures and, because the entire 'fossil record' of evolutionary intermediates is available for detailed study, they have provided new insight into the relationship between sequence and function. Directed evolution has also shown how mutations that are functionally neutral can set the stage for further adaptation.

926 citations

Journal ArticleDOI
TL;DR: Despite the general organisational similarity of networks across the phylogenetic spectrum, there are interesting qualitative differences among the network components, such as the transcription factors.

811 citations