scispace - formally typeset
C

Curtis Huttenhower

Researcher at Harvard University

Publications -  356
Citations -  111728

Curtis Huttenhower is an academic researcher from Harvard University. The author has contributed to research in topics: Microbiome & Metagenomics. The author has an hindex of 107, co-authored 309 publications receiving 77187 citations. Previous affiliations of Curtis Huttenhower include Microsoft & Massachusetts Institute of Technology.

Papers
More filters
Journal ArticleDOI

Metagenomic biomarker discovery and explanation

TL;DR: A new method for metagenomic biomarker discovery is described and validates by way of class comparison, tests of biological consistency and effect size estimation to address the challenge of finding organisms, genes, or pathways that consistently explain the differences between two or more microbial communities.
Journal ArticleDOI

Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2

Evan Bolyen, +123 more
- 01 Aug 2019 - 
TL;DR: QIIME 2 development was primarily funded by NSF Awards 1565100 to J.G.C. and R.K.P. and partial support was also provided by the following: grants NIH U54CA143925 and U54MD012388.
Journal ArticleDOI

Structure, function and diversity of the healthy human microbiome

Curtis Huttenhower, +253 more
- 14 Jun 2012 - 
TL;DR: The Human Microbiome Project Consortium reported the first results of their analysis of microbial communities from distinct, clinically relevant body habitats in a human cohort; the insights into the microbial communities of a healthy population lay foundations for future exploration of the epidemiology, ecology and translational applications of the human microbiome as discussed by the authors.
Journal Article

Structure, function and diversity of the healthy human microbiome

Curtis Huttenhower, +247 more
- 01 Jun 2012 - 
TL;DR: The Human Microbiome Project has analysed the largest cohort and set of distinct, clinically relevant body habitats so far, finding the diversity and abundance of each habitat’s signature microbes to vary widely even among healthy subjects, with strong niche specialization both within and among individuals.