scispace - formally typeset
Search or ask a question
Author

Cynthia A. Moore

Bio: Cynthia A. Moore is an academic researcher from Centers for Disease Control and Prevention. The author has contributed to research in topics: Population & Zika virus. The author has an hindex of 48, co-authored 136 publications receiving 12425 citations. Previous affiliations of Cynthia A. Moore include Association of Public Health Laboratories & Baylor College of Medicine.


Papers
More filters
Journal ArticleDOI
TL;DR: Evaluated the outcomes of pregnancy in women who were asked to take a pill containing 400 μg of folic acid alone daily from the time of their premarital examination until the end of their first trimester of pregnancy, and identified 102 and 173 women with neural-tube defects.
Abstract: Background Periconceptional use of multivitamins containing folic acid can reduce a woman's risk of having a baby with a neural-tube defect. Methods As part of a public health campaign conducted from 1993 to 1995 in an area of China with high rates of neural-tube defects (the northern region) and one with low rates (the southern region), we evaluated the outcomes of pregnancy in women who were asked to take a pill containing 400 μg of folic acid alone daily from the time of their premarital examination until the end of their first trimester of pregnancy. Results Among the fetuses or infants of 130,142 women who took folic acid at any time before or during pregnancy and 117,689 women who had not taken folic acid, we identified 102 and 173, respectively, with neural-tube defects. Among the fetuses or infants of women who registered before their last menstrual period and who did not take any folic acid, the rates of neural-tube defects were 4.8 per 1000 pregnancies of at least 20 weeks' gestation in the nort...

1,254 citations

Journal ArticleDOI
TL;DR: The results of randomized trials indicate that at least half the cases of neural-tube defects could be prevented if women consumed sufficient amounts of the B vitamin folic acid before conception and during early pregnancy.
Abstract: Each year spina bifida and anencephaly, the two most common forms of neural-tube defects, occur in 1 in 1000 pregnancies in the United States1 and an estimated 300,000 or more newborns worldwide.2 Although these severe conditions have been recognized since antiquity, never before has progress been so fast and substantive, particularly in the area of prevention. The results of randomized trials indicate that at least half the cases of neural-tube defects could be prevented if women consumed sufficient amounts of the B vitamin folic acid before conception and during early pregnancy.3,4 Elsewhere in this issue of the Journal, Berry . . .

945 citations

Journal ArticleDOI
TL;DR: The compiled interview data and banked DNA of approximately 35 categories of birth defects will facilitate future research as new hypotheses and improved technologies emerge and enable scientists to study the epidemiology of some rare birth defects for the first time.
Abstract: The National Birth Defects Prevention Study was designed to identify infants with major birth defects and evaluate genetic and environmental factors associated with the occurrence of birth defects. The ongoing case-control study covers an annual birth population of 482,000 and includes cases identified from birth defect surveillance registries in eight states. Infants used as controls are randomly selected from birth certificates or birth hospital records. Mothers of case and control infants are interviewed and parents are asked to collect buccal cells from themselves and their infants for DNA testing. Information gathered from the interviews and the DNA specimens will be used to study independent genetic and environmental factors and gene-environment interactions for a broad range of birth defects. As of December 2000, 7,470 cases and 3,821 controls had been ascertained in the eight states. Interviews had been completed with 70% of the eligible case and control mothers, buccal cell collection had begun in all of the study sites, and researchers were developing analysis plans for the compiled data. This study is the largest and broadest collaborative effort ever conducted among the nation's leading birth defect researchers. The unprecedented statistical power that will result from this study will enable scientists to study the epidemiology of some rare birth defects for the first time. The compiled interview data and banked DNA of approximately 35 categories of birth defects will facilitate future research as new hypotheses and improved technologies emerge.

817 citations

Journal ArticleDOI
TL;DR: It is concluded that congenital Zika syndrome is a recognizable pattern of structural anomalies and functional disabilities secondary to central and, perhaps, peripheral nervous system damage that can help determine essential follow-up and ongoing care for affected infants and children.
Abstract: Importance Zika virus infection can be prenatally passed from a pregnant woman to her fetus. There is sufficient evidence to conclude that intrauterine Zika virus infection is a cause of microcephaly and serious brain anomalies, but the full spectrum of anomalies has not been delineated. To inform pediatric clinicians who may be called on to evaluate and treat affected infants and children, we review the most recent evidence to better characterize congenital Zika syndrome. Observations We reviewed published reports of congenital anomalies occurring in fetuses or infants with presumed or laboratory-confirmed intrauterine Zika virus infection. We conducted a comprehensive search of the English literature using Medline and EMBASE forZikafrom inception through September 30, 2016. Congenital anomalies were considered in the context of the presumed pathogenetic mechanism related to the neurotropic properties of the virus. We conclude that congenital Zika syndrome is a recognizable pattern of structural anomalies and functional disabilities secondary to central and, perhaps, peripheral nervous system damage. Although many of the components of this syndrome, such as cognitive, sensory, and motor disabilities, are shared by other congenital infections, there are 5 features that are rarely seen with other congenital infections or are unique to congenital Zika virus infection: (1) severe microcephaly with partially collapsed skull; (2) thin cerebral cortices with subcortical calcifications; (3) macular scarring and focal pigmentary retinal mottling; (4) congenital contractures; and (5) marked early hypertonia and symptoms of extrapyramidal involvement. Conclusions and Relevance Although the full spectrum of adverse reproductive outcomes caused by Zika virus infection is not yet determined, a distinctive phenotype—the congenital Zika syndrome—has emerged. Recognition of this phenotype by clinicians for infants and children can help ensure appropriate etiologic evaluation and comprehensive clinical investigation to define the range of anomalies in an affected infant as well as determine essential follow-up and ongoing care.

730 citations

Journal ArticleDOI
TL;DR: A framework for the continuum of multidisciplinary translation research that builds on previous characterization efforts in genomics and other areas in health care and prevention is presented and the types of translation research can overlap and provide feedback loops to allow integration of new knowledge.

670 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: WRITING GROUP MEMBERS Emelia J. Benjamin, MD, SCM, FAHA Michael J. Reeves, PhD Matthew Ritchey, PT, DPT, OCS, MPH Carlos J. Jiménez, ScD, SM Lori Chaffin Jordan,MD, PhD Suzanne E. Judd, PhD
Abstract: WRITING GROUP MEMBERS Emelia J. Benjamin, MD, SCM, FAHA Michael J. Blaha, MD, MPH Stephanie E. Chiuve, ScD Mary Cushman, MD, MSc, FAHA Sandeep R. Das, MD, MPH, FAHA Rajat Deo, MD, MTR Sarah D. de Ferranti, MD, MPH James Floyd, MD, MS Myriam Fornage, PhD, FAHA Cathleen Gillespie, MS Carmen R. Isasi, MD, PhD, FAHA Monik C. Jiménez, ScD, SM Lori Chaffin Jordan, MD, PhD Suzanne E. Judd, PhD Daniel Lackland, DrPH, FAHA Judith H. Lichtman, PhD, MPH, FAHA Lynda Lisabeth, PhD, MPH, FAHA Simin Liu, MD, ScD, FAHA Chris T. Longenecker, MD Rachel H. Mackey, PhD, MPH, FAHA Kunihiro Matsushita, MD, PhD, FAHA Dariush Mozaffarian, MD, DrPH, FAHA Michael E. Mussolino, PhD, FAHA Khurram Nasir, MD, MPH, FAHA Robert W. Neumar, MD, PhD, FAHA Latha Palaniappan, MD, MS, FAHA Dilip K. Pandey, MBBS, MS, PhD, FAHA Ravi R. Thiagarajan, MD, MPH Mathew J. Reeves, PhD Matthew Ritchey, PT, DPT, OCS, MPH Carlos J. Rodriguez, MD, MPH, FAHA Gregory A. Roth, MD, MPH Wayne D. Rosamond, PhD, FAHA Comilla Sasson, MD, PhD, FAHA Amytis Towfighi, MD Connie W. Tsao, MD, MPH Melanie B. Turner, MPH Salim S. Virani, MD, PhD, FAHA Jenifer H. Voeks, PhD Joshua Z. Willey, MD, MS John T. Wilkins, MD Jason HY. Wu, MSc, PhD, FAHA Heather M. Alger, PhD Sally S. Wong, PhD, RD, CDN, FAHA Paul Muntner, PhD, MHSc On behalf of the American Heart Association Statistics Committee and Stroke Statistics Subcommittee Heart Disease and Stroke Statistics—2017 Update

7,190 citations

Journal ArticleDOI
TL;DR: Author(s): Writing Group Members; Mozaffarian, Dariush; Benjamin, Emelia J; Go, Alan S; Arnett, Donna K; Blaha, Michael J; Cushman, Mary; Das, Sandeep R; de Ferranti, Sarah; Despres, Jean-Pierre; Fullerton, Heather J; Howard, Virginia J; Huffman, Mark D; Isasi, Carmen R; Jimenez, Monik C; Judd, Suzanne
Abstract: Author(s): Writing Group Members; Mozaffarian, Dariush; Benjamin, Emelia J; Go, Alan S; Arnett, Donna K; Blaha, Michael J; Cushman, Mary; Das, Sandeep R; de Ferranti, Sarah; Despres, Jean-Pierre; Fullerton, Heather J; Howard, Virginia J; Huffman, Mark D; Isasi, Carmen R; Jimenez, Monik C; Judd, Suzanne E; Kissela, Brett M; Lichtman, Judith H; Lisabeth, Lynda D; Liu, Simin; Mackey, Rachel H; Magid, David J; McGuire, Darren K; Mohler, Emile R; Moy, Claudia S; Muntner, Paul; Mussolino, Michael E; Nasir, Khurram; Neumar, Robert W; Nichol, Graham; Palaniappan, Latha; Pandey, Dilip K; Reeves, Mathew J; Rodriguez, Carlos J; Rosamond, Wayne; Sorlie, Paul D; Stein, Joel; Towfighi, Amytis; Turan, Tanya N; Virani, Salim S; Woo, Daniel; Yeh, Robert W; Turner, Melanie B; American Heart Association Statistics Committee; Stroke Statistics Subcommittee

6,181 citations

Journal ArticleDOI
TL;DR: The Statistical Update brings together the most up-to-date statistics on heart disease, stroke, other vascular diseases, and their risk factors and presents them in its Heart Disease and Stroke Statistical Update each year.
Abstract: Appendix I: List of Statistical Fact Sheets. URL: http://www.americanheart.org/presenter.jhtml?identifier=2007 We wish to thank Drs Brian Eigel and Michael Wolz for their valuable comments and contributions. We would like to acknowledge Tim Anderson and Tom Schneider for their editorial contributions and Karen Modesitt for her administrative assistance. Disclosures View this table: View this table: View this table: # Summary {#article-title-2} Each year, the American Heart Association, in conjunction with the Centers for Disease Control and Prevention, the National Institutes of Health, and other government agencies, brings together the most up-to-date statistics on heart disease, stroke, other vascular diseases, and their risk factors and presents them in its Heart Disease and Stroke Statistical Update. The Statistical Update is a valuable resource for researchers, clinicians, healthcare policy makers, media professionals, the lay public, and many others who seek the best national data available on disease …

6,176 citations

Journal ArticleDOI
TL;DR: Author(s): Go, Alan S; Mozaffarian, Dariush; Roger, Veronique L; Benjamin, Emelia J; Berry, Jarett D; Borden, William B; Bravata, Dawn M; Dai, Shifan; Ford, Earl S; Fox, Caroline S; Franco, Sheila; Fullerton, Heather J; Gillespie, Cathleen; Hailpern, Susan M; Heit, John A; Howard, Virginia J; Huff
Abstract: Author(s): Go, Alan S; Mozaffarian, Dariush; Roger, Veronique L; Benjamin, Emelia J; Berry, Jarett D; Borden, William B; Bravata, Dawn M; Dai, Shifan; Ford, Earl S; Fox, Caroline S; Franco, Sheila; Fullerton, Heather J; Gillespie, Cathleen; Hailpern, Susan M; Heit, John A; Howard, Virginia J; Huffman, Mark D; Kissela, Brett M; Kittner, Steven J; Lackland, Daniel T; Lichtman, Judith H; Lisabeth, Lynda D; Magid, David; Marcus, Gregory M; Marelli, Ariane; Matchar, David B; McGuire, Darren K; Mohler, Emile R; Moy, Claudia S; Mussolino, Michael E; Nichol, Graham; Paynter, Nina P; Schreiner, Pamela J; Sorlie, Paul D; Stein, Joel; Turan, Tanya N; Virani, Salim S; Wong, Nathan D; Woo, Daniel; Turner, Melanie B; American Heart Association Statistics Committee and Stroke Statistics Subcommittee

5,449 citations

Journal ArticleDOI
TL;DR: This chapter describes the most important sources and the types of data the AHA uses from them and other government agencies to derive the annual statistics in this Update.
Abstract: 1. About These Statistics…e70 2. Cardiovascular Diseases…e72 3. Coronary Heart Disease, Acute Coronary Syndrome, and Angina Pectoris…e89 4. Stroke…e99 5. High Blood Pressure…e111 6. Congenital Cardiovascular Defects…e116 7. Heart Failure…e119 8. Other Cardiovascular Diseases…e122 9. Risk Factor: Smoking/Tobacco Use…e128 10. Risk Factor: High Blood Cholesterol and Other Lipids…e132 11. Risk Factor: Physical Inactivity…e136 12. Risk Factor: Overweight and Obesity…e139 13. Risk Factor: Diabetes Mellitus…e143 14. End-Stage Renal Disease and Chronic Kidney Disease…e149 15. Metabolic Syndrome…e151 16. Nutrition…e153 17. Quality of Care…e155 18. Medical Procedures…e159 19. Economic Cost of Cardiovascular Diseases…e162 20. At-a-Glance Summary Tables…e164 21. Glossary and Abbreviation Guide…e168 Writing Group Disclosures…e171 Appendix I: List of Statistical Fact Sheets: http://www.americanheart.org/presenter.jhtml?identifier=2007 We thank Drs Robert Adams, Philip Gorelick, Matt Wilson, and Philip Wolf (members of the Statistics Committee or Stroke Statistics Subcommittee); Brian Eigel; Gregg Fonarow; Kathy Jenkins; Gail Pearson; and Michael Wolz for their valuable comments and contributions. We would like to acknowledge Tim Anderson and Tom Schneider for their editorial contributions and Karen Modesitt for her administrative assistance. # 1. About These Statistics {#article-title-2} The American Heart Association (AHA) works with the Centers for Disease Control and Prevention’s National Center for Health Statistics (CDC/NCHS); the National Heart, Lung, and Blood Institute (NHLBI); the National Institute of Neurological Disorders and Stroke (NINDS); and other government agencies to derive the annual statistics in this Update. This chapter describes the most important sources and the types of data we use from them. For more details and an alphabetical list of abbreviations, see Chapter 21 of this document, the Glossary and Abbreviation Guide. The surveys used are:

5,393 citations