scispace - formally typeset
Search or ask a question
Author

Cynthia L. Kelchner

Bio: Cynthia L. Kelchner is an academic researcher from Sandia National Laboratories. The author has contributed to research in topics: Dislocation & Indentation. The author has an hindex of 1, co-authored 1 publications receiving 1684 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, an atomistic imaging of dislocation nucleation during displacement controlled indentation on a passivated surface is presented, where defects are located and imaged by local deviations from centrosymmetry.
Abstract: We model indentation of a metal surface by combining an atomistic metal with a hard-sphere indenter. This work provides atomistic imaging of dislocation nucleation during displacement controlled indentation on a passivated surface. Dislocations and defects are located and imaged by local deviations from centrosymmetry. For a Au(111) surface, nucleation of partial dislocation loops occurs below the surface inside the indenter contact area. We compare and contrast these observations with empirical criteria for dislocation nucleation and corresponding continuum elasticity solutions.

1,862 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Several of the fundamental algorithms used in LAMMPS are described along with the design strategies which have made it flexible for both users and developers, and some capabilities recently added to the code which were enabled by this flexibility are highlighted.

1,956 citations

Journal ArticleDOI
TL;DR: In this article, the authors present an overview of the mechanical properties of nanocrystalline metals and alloys with the objective of assessing recent advances in the experimental and computational studies of deformation, damage evolution, fracture and fatigue, and highlighting opportunities for further research.

1,811 citations

Journal ArticleDOI
TL;DR: The Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) as mentioned in this paper is a simulator for particle-based modeling of materials at length scales ranging from atomic to mesoscale to continuum.

1,517 citations

Journal ArticleDOI
TL;DR: In this article, the authors discuss existing and new computational analysis techniques to classify local atomic arrangements in large-scale atomistic computer simulations of crystalline solids and introduce a new structure identification algorithm, the neighbor distance analysis, which is designed to identify atomic structure units in grain boundaries.
Abstract: We discuss existing and new computational analysis techniques to classify local atomic arrangements in large-scale atomistic computer simulations of crystalline solids. This article includes a performance comparison of typical analysis algorithms such as common neighbor analysis (CNA), centrosymmetry analysis, bond angle analysis, bond order analysis and Voronoi analysis. In addition we propose a simple extension to the CNA method that makes it suitable for multi-phase systems. Finally, we introduce a new structure identification algorithm, the neighbor distance analysis, which is designed to identify atomic structure units in grain boundaries.

985 citations

Journal ArticleDOI
TL;DR: In this article, the authors discuss existing and new computational analysis techniques to classify local atomic arrangements in large-scale atomistic computer simulations of crystalline solids and introduce a new structure identification algorithm, the Neighbor Distance Analysis, that is designed to identify atomic structure units in grain boundaries.
Abstract: We discuss existing and new computational analysis techniques to classify local atomic arrangements in large-scale atomistic computer simulations of crystalline solids. This article includes a performance comparison of typical analysis algorithms such as Common Neighbor Analysis, Centrosymmetry Analysis, Bond Angle Analysis, Bond Order Analysis, and Voronoi Analysis. In addition we propose a simple extension to the Common Neighbor Analysis method that makes it suitable for multi-phase systems. Finally, we introduce a new structure identification algorithm, the Neighbor Distance Analysis, that is designed to identify atomic structure units in grain boundaries.

943 citations