scispace - formally typeset
Search or ask a question
Author

Cynthia N. Perry

Bio: Cynthia N. Perry is an academic researcher from Texas Tech University Health Sciences Center at El Paso. The author has contributed to research in topics: Autophagy & Mitochondrion. The author has an hindex of 13, co-authored 21 publications receiving 1061 citations. Previous affiliations of Cynthia N. Perry include University of Arizona & San Diego State University.

Papers
More filters
Journal ArticleDOI
TL;DR: The notion that autophagy is a cytoprotective response to LPS-induced cardiomyocyte injury is supported; additional studies are needed to determine the therapeutic implications.
Abstract: Bacterial endotoxin lipopolysaccharide (LPS) is responsible for the multiorgan dysfunction that characterizes septic shock and is causal in the myocardial depression that is a common feature of end...

245 citations

Journal ArticleDOI
TL;DR: Findings establish autophagy as an end-effector in ischemic and pharmacologic preconditioning and assesses three structurally unrelated cardioprotective agents for their ability to induce Autophagy in HL-1 cells.
Abstract: Based on growing evidence linking autophagy to preconditioning, we tested the hypothesis that autophagy is necessary for cardioprotection conferred by ischemic preconditioning (IPC). We induced IPC with three cycles of 5 min regional ischemia alternating with 5 min reperfusion and assessed the induction of autophagy in mCherry-LC3 transgenic mice by imaging of fluorescent autophagosomes in cryosections. We found a rapid and significant increase in the number of autophagosomes in the risk zone of the preconditioned hearts. In Langendorff-perfused hearts subjected to an IPC protocol of 3 × 5 min ischemia, we also observed an increase in autophagy within 10 min, as assessed by Western blotting for p62 and cadaverine dye binding. To establish the role of autophagy in IPC cardioprotection, we inhibited autophagy with Tat-ATG5K130R, a dominant negative mutation of the autophagy protein Atg5. Cardioprotection by IPC was reduced in rat hearts perfused with recombinant Tat-ATG5K130R. To extend the potential significance of autophagy in cardioprotection, we also assessed three structurally unrelated cardioprotective agents—UTP, diazoxide, and ranolazine—for their ability to induce autophagy in HL-1 cells. We found that all three agents induced autophagy; inhibition of autophagy abolished their protective effect. Taken together, these findings establish autophagy as an end-effector in ischemic and pharmacologic preconditioning.

174 citations

Journal ArticleDOI
TL;DR: Reducing MURF-2 levels in cardiac myocytes using antisense oligonucleotides perturbed the structure of stable microtubule populations, the intermediate filament proteins desmin and vimentin, and the Sarcomeric M-line region, while other sarcomeric regions and dynamic microtubules remained unaffected.
Abstract: The efficient functioning of striated muscle is dependent upon the structure of several cytoskeletal networks including myofibrils, microtubules, and intermediate filaments. However, little is known about how these networks function together during muscle differentiation and maintenance. In vitro studies suggest that members of the muscle-specific RING finger protein family (MURF-1, 2, and 3) act as cytoskeletal adaptors and signaling molecules by associating with myofibril components (including the giant protein, titin), microtubules and/or nuclear factors. We investigated the role of MURF-2, the least-characterized family member, in primary cultures of embryonic chick skeletal and cardiac myocytes. MURF-2 is detected as two species (∼55 kDa and ∼60 kDa) in embryonic muscle, which are down-regulated in adult muscle. Although predominantly located diffusely in the cytoplasm, MURF-2 also colocalizes with a sub-group of microtubules and the M-line region of titin. Reducing MURF-2 levels in cardiac myocytes using antisense oligonucleotides perturbed the structure of stable microtubule populations, the intermediate filament proteins desmin and vimentin, and the sarcomeric M-line region. In contrast, other sarcomeric regions and dynamic microtubules remained unaffected. MURF-2 knock-down studies in skeletal myoblasts also delayed myoblast fusion and myofibrillogenesis. Furthermore, contractile activity was also affected. We speculate that some of the roles of MURF-2 are modulated via titin-based mechanisms.

107 citations

Journal ArticleDOI
TL;DR: It is shown that in addition to prosurvival signaling, insulin action in early life mediates the physiological postnatal suppression of autophagy, thereby linking nutrient sensing to postnatal cardiac development.
Abstract: The induction of autophagy in the mammalian heart during the perinatal period is an essential adaptation required to survive early neonatal starvation; however, the mechanisms that mediate autophagy suppression once feeding is established are not known. Insulin signaling in the heart is transduced via insulin and IGF-1 receptors (IGF-1Rs). We disrupted insulin and IGF-1R signaling by generating mice with combined cardiomyocyte-specific deletion of Irs1 and Irs2. Here we show that loss of IRS signaling prevented the physiological suppression of autophagy that normally parallels the postnatal increase in circulating insulin. This resulted in unrestrained autophagy in cardiomyocytes, which contributed to myocyte loss, heart failure, and premature death. This process was ameliorated either by activation of mTOR with aa supplementation or by genetic suppression of autophagic activation. Loss of IRS1 and IRS2 signaling also increased apoptosis and precipitated mitochondrial dysfunction, which were not reduced when autophagic flux was normalized. Together, these data indicate that in addition to prosurvival signaling, insulin action in early life mediates the physiological postnatal suppression of autophagy, thereby linking nutrient sensing to postnatal cardiac development.

102 citations

Journal ArticleDOI
TL;DR: These studies indicate that cardioprotection mediated by SUL involves a PKC-dependent induction of autophagy, and suggest that autophagic may be a fundamental process that enhances the heart's tolerance to ischemia.
Abstract: Previously, we showed that sulfaphenazole (SUL), an antimicrobial agent that is a potent inhibitor of cytochrome P4502C9, is protective against ischemia-reperfusion (I/R) injury (Ref. 15). The mech...

84 citations


Cited by
More filters
Journal ArticleDOI
Daniel J. Klionsky1, Kotb Abdelmohsen2, Akihisa Abe3, Joynal Abedin4  +2519 moreInstitutions (695)
TL;DR: In this paper, the authors present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macro-autophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure flux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation, it is imperative to target by gene knockout or RNA interference more than one autophagy-related protein. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways implying that not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular assays, we hope to encourage technical innovation in the field.

5,187 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes.
Abstract: In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.

1,129 citations

Journal ArticleDOI
Ling Yang1, Ping Li1, Suneng Fu1, Ediz S. Calay1, Gökhan S. Hotamisligil1 
TL;DR: The data demonstrate that autophagy is an important regulator of organelle function and insulin signaling and that loss of autophile is a critical component of defective insulin action seen in obesity.

1,080 citations

Journal ArticleDOI
TL;DR: The role of ROS in the regulation metabolic/inflammatory diseases including atherosclerosis, diabetes mellitus, and stroke is highlighted and the balance ROS signaling plays in both physiology and pathophysiology is understood.
Abstract: Reactive oxygen species (ROS) are well known for their role in mediating both physiological and pathophysiological signal transduction. Enzymes and subcellular compartments that typically produce ROS are associated with metabolic regulation, and diseases associated with metabolic dysfunction may be influenced by changes in redox balance. In this review, we summarize the current literature surrounding ROS and their role in metabolic and inflammatory regulation, focusing on ROS signal transduction and its relationship to disease progression. In particular, we examine ROS production in compartments such as the cytoplasm, mitochondria, peroxisome, and endoplasmic reticulum and discuss how ROS influence metabolic processes such as proteasome function, autophagy, and general inflammatory signaling. We also summarize and highlight the role of ROS in the regulation metabolic/inflammatory diseases including atherosclerosis, diabetes mellitus, and stroke. In order to develop therapies that target oxidative signaling, it is vital to understand the balance ROS signaling plays in both physiology and pathophysiology, and how manipulation of this balance and the identity of the ROS may influence cellular and tissue homeostasis. An increased understanding of specific sources of ROS production and an appreciation for how ROS influence cellular metabolism may help guide us in the effort to treat cardiovascular diseases.

1,011 citations

Journal ArticleDOI
TL;DR: The ability of eukaryotic pathogens to deploy their own autophagic machinery may also contribute to microbial pathogenesis, and a complex interplay between Autophagy and microbial adaptations against autophagy governs the net outcome of host-microbe encounters.

807 citations