scispace - formally typeset
Search or ask a question
Author

Cyril Petit

Bio: Cyril Petit is an academic researcher from Université Paris-Saclay. The author has contributed to research in topics: Adaptive optics & Linear-quadratic-Gaussian control. The author has an hindex of 29, co-authored 120 publications receiving 4686 citations. Previous affiliations of Cyril Petit include Office National d'Études et de Recherches Aérospatiales & Nera.


Papers
More filters
Proceedings ArticleDOI
TL;DR: The SPHERE instrument as discussed by the authors was designed for direct detection and spectral characterization of extra-solar planets, where the main challenge consists in the very large contrast between the host star and the planet, typically inside the seeing halo.
Abstract: Direct detection and spectral characterization of extra-solar planets is one of the most exciting but also one of the most challenging areas in modern astronomy. The challenge consists in the very large contrast between the host star and the planet, larger than 12.5 magnitudes at very small angular separations, typically inside the seeing halo. The whole design of a "Planet Finder" instrument is therefore optimized towards reaching the highest contrast in a limited field of view and at short distances from the central star. Both evolved and young planetary systems can be detected, respectively through their reflected light and through the intrinsic planet emission. We present the science objectives, conceptual design and expected performance of the SPHERE instrument.

672 citations

Journal ArticleDOI
Miriam Keppler1, Myriam Benisty2, Myriam Benisty3, André Müller1, Th. Henning1, R. van Boekel1, Faustine Cantalloube1, Christian Ginski4, Christian Ginski5, R. G. van Holstein5, Anne-Lise Maire1, Adriana Pohl1, Matthias Samland1, Henning Avenhaus1, Jean-Loup Baudino6, Anthony Boccaletti7, J. de Boer5, M. Bonnefoy2, Gael Chauvin3, Gael Chauvin2, Silvano Desidera8, Maud Langlois9, Maud Langlois10, C. Lazzoni8, G.-D. Marleau11, G.-D. Marleau1, Christoph Mordasini12, N. Pawellek1, N. Pawellek13, Tomas Stolker14, Arthur Vigan9, Alice Zurlo15, Alice Zurlo9, Tilman Birnstiel16, Wolfgang Brandner1, M. Feldt1, Mario Flock17, Mario Flock1, Mario Flock18, Julien Girard4, Julien Girard2, Raffaele Gratton8, Janis Hagelberg2, Andrea Isella19, Markus Janson20, Markus Janson1, Attila Juhasz21, J. Kemmer1, Quentin Kral21, Quentin Kral7, Anne-Marie Lagrange2, Ralf Launhardt1, Alexis Matter22, Francois Menard2, Julien Milli4, P. Mollière5, Johan Olofsson23, Johan Olofsson1, Laura M. Pérez3, Paola Pinilla24, Christophe Pinte3, Christophe Pinte2, Christophe Pinte25, Sascha P. Quanz14, T. Schmidt7, Stéphane Udry26, Zahed Wahhaj4, Jonathan Williams27, Esther Buenzli14, M. Cudel2, Carsten Dominik, Raphaël Galicher7, M. Kasper4, J. Lannier2, Dino Mesa28, Dino Mesa8, David Mouillet2, S. Peretti26, C. Perrot7, Graeme Salter9, E. Sissa8, Francois Wildi27, L. Abe22, Jacopo Antichi8, Jean-Charles Augereau2, Andrea Baruffolo8, Pierre Baudoz7, Andreas Bazzon14, Jean-Luc Beuzit2, P. Blanchard9, S. S. Brems29, Tristan Buey7, V. De Caprio8, Marcel Carbillet22, M. Carle9, Enrico Cascone8, A. Cheetham27, Riccardo Claudi8, Anne Costille9, A. Delboulbe2, Kjetil Dohlen9, Daniela Fantinel8, Philippe Feautrier2, Thierry Fusco9, Enrico Giro8, L. Gluck2, Cecile Gry9, Norbert Hubin4, Emmanuel Hugot9, M. Jaquet9, D. Le Mignant9, M. Llored9, F. Madec9, Yves Magnard2, Patrice Martinez22, D. Maurel2, Michael Meyer30, Michael Meyer14, O. Möller-Nilsson1, Thibaut Moulin2, Laurent M. Mugnier, Alain Origne9, A. Pavlov1, D. Perret7, Cyril Petit, J. Pragt, Pascal Puget2, P. Rabou2, Joany Andreina Manjarres Ramos1, F. Rigal, S. Rochat2, Ronald Roelfsema, Gérard Rousset7, A. Roux2, Bernardo Salasnich8, Jean-François Sauvage9, Arnaud Sevin7, Christian Soenke4, Eric Stadler2, M. Suarez8, Massimo Turatto8, L. Weber26 
TL;DR: In this article, the authors detect a point source within the gap of the transition disk at about 195 mas (~22 au) projected separation and detect a signal from an inner disk component.
Abstract: Context. Young circumstellar disks are the birthplaces of planets. Their study is of prime interest to understand the physical and chemical conditions under which planet formation takes place. Only very few detections of planet candidates within these disks exist, and most of them are currently suspected to be disk features.Aims. In this context, the transition disk around the young star PDS 70 is of particular interest, due to its large gap identified in previous observations, indicative of ongoing planet formation. We aim to search for the presence of an embedded young planet and search for disk structures that may be the result of disk–planet interactions and other evolutionary processes.Methods. We analyse new and archival near-infrared images of the transition disk PDS 70 obtained with the VLT/SPHERE, VLT/NaCo, and Gemini/NICI instruments in polarimetric differential imaging and angular differential imaging modes.Results. We detect a point source within the gap of the disk at about 195 mas (~22 au) projected separation. The detection is confirmed at five different epochs, in three filter bands and using different instruments. The astrometry results in an object of bound nature, with high significance. The comparison of the measured magnitudes and colours to evolutionary tracks suggests that the detection is a companion of planetary mass. The luminosity of the detected object is consistent with that of an L-type dwarf, but its IR colours are redder, possibly indicating the presence of warm surrounding material. Further, we confirm the detection of a large gap of ~54 au in size within the disk in our scattered light images, and detect a signal from an inner disk component. We find that its spatial extent is very likely smaller than ~17 au in radius, and its position angle is consistent with that of the outer disk. The images of the outer disk show evidence of a complex azimuthal brightness distribution which is different at different wavelengths and may in part be explained by Rayleigh scattering from very small grains.Conclusions. The detection of a young protoplanet within the gap of the transition disk around PDS 70 opens the door to a so far observationally unexplored parameter space of planetary formation and evolution. Future observations of this system at different wavelengths and continuing astrometry will allow us to test theoretical predictions regarding planet–disk interactions, planetary atmospheres, and evolutionary models.

497 citations

Journal ArticleDOI
Miriam Keppler, Myriam Benisty, André Müller, Th. Henning, R. van Boekel, Faustine Cantalloube, Christian Ginski, R. G. van Holstein, Anne-Lise Maire, A. Pohl, M. Samland, Henning Avenhaus, Jean-Loup Baudino, Anthony Boccaletti, J. de Boer, M. Bonnefoy, Gael Chauvin, Silvano Desidera, Maud Langlois, C. Lazzoni, G.-D. Marleau, Christoph Mordasini, N. Pawellek, Tomas Stolker, Arthur Vigan, Alice Zurlo, Tilman Birnstiel, Wolfgang Brandner, M. Feldt, Mario Flock, Julien Girard, Raffaele Gratton, Janis Hagelberg, Andrea Isella, Markus Janson, Attila Juhasz, J. Kemmer, Quentin Kral, Anne-Marie Lagrange, Ralf Launhardt, Alexis Matter, Francois Menard, Julien Milli, Paul Mollière, Johan Olofsson, Laura M. Pérez, P. Pinilla, Christophe Pinte, Sascha P. Quanz, T. O. B. Schmidt, Stéphane Udry, Zahed Wahhaj, Jonathan Williams, Esther Buenzli, M. Cudel, Carsten Dominik, Raphaël Galicher, M. Kasper, J. Lannier, Dino Mesa, David Mouillet, S. Peretti, C. Perrot, G. Salter, E. Sissa, Francois Wildi, L. Abe, J. Antichi, Jean-Charles Augereau, Andrea Baruffolo, Pierre Baudoz, Andreas Bazzon, Jean-Luc Beuzit, P. Blanchard, S. S. Brems, Tristan Buey, V. De Caprio, Marcel Carbillet, M. Carle, Enrico Cascone, Anthony Cheetham, Riccardo Claudi, Anne Costille, A. Delboulbe, Kjetil Dohlen, D. Fantinel, Philippe Feautrier, Thierry Fusco, Enrico Giro, D. Gisler, L. Gluck, Cecile Gry, N. Hubin, Emmanuel Hugot, M. Jaquet, D. Le Mignant, M. Llored, F. Madec, Yves Magnard, P. Martinez, D. Maurel, Michael Meyer, O. Moeller-Nilsson, Thibaut Moulin, Laurent M. Mugnier, Alain Origne, A. Pavlov, D. Perret, Cyril Petit, J. Pragt, Pascal Puget, Patrick Rabou, Juan-Luis Ramos, F. Rigal, Sylvain Rochat, Ronald Roelfsema, G. Rousset, A. Roux, Bernardo Salasnich, Jean-François Sauvage, Arnaud Sevin, Christian Soenke, Eric Stadler, Marcos Suarez, Massimo Turatto, L. Weber 
TL;DR: In this paper, a point source was detected within the gap of the transition disk at about 195 mas (about 22 au) projected separation, and the detection was confirmed at five different epochs, in three filter bands and using different instruments.
Abstract: Young circumstellar disks are of prime interest to understand the physical and chemical conditions under which planet formation takes place. Only very few detections of planet candidates within these disks exist, and most of them are currently suspected to be disk features. In this context, the transition disk around the young star PDS 70 is of particular interest, due to its large gap identified in previous observations, indicative of ongoing planet formation. We aim to search for the presence of planets and search for disk structures indicative for disk-planet interactions and other evolutionary processes. We analyse new and archival near-infrared (NIR) images of the transition disk PDS 70 obtained with the VLT/SPHERE, VLT/NaCo and Gemini/NICI instruments in polarimetric differential imaging (PDI) and angular differential imaging (ADI) modes. We detect a point source within the gap of the disk at about 195 mas (about 22 au) projected separation. The detection is confirmed at five different epochs, in three filter bands and using different instruments. The astrometry results in an object of bound nature, with high significance. The comparison of the measured magnitudes and colours to evolutionary tracks suggests that the detection is a companion of planetary mass. We confirm the detection of a large gap of about 54 au in size within the disk in our scattered light images, and detect a signal from an inner disk component. We find that its spatial extent is very likely smaller than about 17 au in radius. The images of the outer disk show evidence of a complex azimuthal brightness distribution which may in part be explained by Rayleigh scattering from very small grains. Future observations of this system at different wavelengths and continuing astrometry will allow us to test theoretical predictions regarding planet-disk interactions, planetary atmospheres and evolutionary models.

457 citations

Journal ArticleDOI
Jean-Luc Beuzit, Arthur Vigan, David Mouillet, Kjetil Dohlen, Raffaele Gratton, Anthony Boccaletti, Jean-François Sauvage, H. M. Schmid, Maud Langlois, Cyril Petit, Andrea Baruffolo, M. Feldt, Julien Milli, Zahed Wahhaj, L. Abe, U. Anselmi, J. Antichi, Rudy Barette, J. Baudrand, Pierre Baudoz, Andreas Bazzon, P. Bernardi, P. Blanchard, R. Brast, Pietro Bruno, Tristan Buey, Marcel Carbillet, M. Carle, Enrico Cascone, F. Chapron, Gael Chauvin, Julien Charton, Riccardo Claudi, Anne Costille, V. De Caprio, A. Delboulbe, Silvano Desidera, Carsten Dominik, Mark Downing, O. Dupuis, Christophe Fabron, D. Fantinel, G. Farisato, Philippe Feautrier, Enrico Fedrigo, T. Fusco, P. Gigan, Christian Ginski, Julien Girard, Enrico Giro, D. Gisler, L. Gluck, Cecile Gry, Th. Henning, N. Hubin, Emmanuel Hugot, S. Incorvaia, M. Jaquet, M. Kasper, Eric Lagadec, Anne-Marie Lagrange, H. Le Coroller, D. Le Mignant, B. Le Ruyet, G. Lessio, J. L. Lizon, M. Llored, Lars Lundin, F. Madec, Yves Magnard, M. Marteaud, P. Martinez, D. Maurel, Francois Menard, Dino Mesa, O. Möller-Nilsson, Thibaut Moulin, C. Moutou, Alain Origne, J. Parisot, A. Pavlov, D. Perret, J. Pragt, Pascal Puget, Patrick Rabou, Juan-Luis Ramos, Jean Michel Reess, F. Rigal, Sylvain Rochat, Ronald Roelfsema, G. Rousset, A. Roux, Michel Saisse, Bernardo Salasnich, E. Sant'Ambrogio, Salvo Scuderi, D. Segransan, Arnaud Sevin, Ralf Siebenmorgen, Christian Soenke, Eric Stadler, Marcos Suarez, Didier Tiphene, Massimo Turatto, Stéphane Udry, Farrokh Vakili, L. B. F. M. Waters, L. Weber, Francois Wildi, Gérard Zins, Alice Zurlo 
TL;DR: The Spectro-Polarimetic High contrast imager for Exoplanets REsearch (SPHERE) was designed and built for the ESO Very Large Telescope (VLT) in Chile as mentioned in this paper.
Abstract: Observations of circumstellar environments to look for the direct signal of exoplanets and the scattered light from disks has significant instrumental implications. In the past 15 years, major developments in adaptive optics, coronagraphy, optical manufacturing, wavefront sensing and data processing, together with a consistent global system analysis have enabled a new generation of high-contrast imagers and spectrographs on large ground-based telescopes with much better performance. One of the most productive is the Spectro-Polarimetic High contrast imager for Exoplanets REsearch (SPHERE) designed and built for the ESO Very Large Telescope (VLT) in Chile. SPHERE includes an extreme adaptive optics system, a highly stable common path interface, several types of coronagraphs and three science instruments. Two of them, the Integral Field Spectrograph (IFS) and the Infra-Red Dual-band Imager and Spectrograph (IRDIS), are designed to efficiently cover the near-infrared (NIR) range in a single observation for efficient young planet search. The third one, ZIMPOL, is designed for visible (VIR) polarimetric observation to look for the reflected light of exoplanets and the light scattered by debris disks. This suite of three science instruments enables to study circumstellar environments at unprecedented angular resolution both in the visible and the near-infrared. In this work, we present the complete instrument and its on-sky performance after 4 years of operations at the VLT.

414 citations

Journal ArticleDOI
Jean-Luc Beuzit1, Jean-Luc Beuzit2, Arthur Vigan2, David Mouillet1, Kjetil Dohlen2, Raffaele Gratton3, Anthony Boccaletti4, Jean-François Sauvage2, Jean-François Sauvage5, H. M. Schmid6, Maud Langlois7, Maud Langlois2, Cyril Petit5, Andrea Baruffolo3, M. Feldt8, Julien Milli9, Zahed Wahhaj9, L. Abe10, U. Anselmi3, Jacopo Antichi3, Rudy Barette2, J. Baudrand4, Pierre Baudoz4, Andreas Bazzon6, P. Bernardi4, P. Blanchard2, R. Brast9, Pietro Bruno3, Tristan Buey4, Marcel Carbillet10, M. Carle2, Enrico Cascone11, F. Chapron4, Julien Charton1, Gael Chauvin1, Gael Chauvin12, Riccardo Claudi3, Anne Costille2, V. De Caprio11, J. de Boer13, A. Delboulbe1, Silvano Desidera3, Carsten Dominik14, Mark Downing9, O. Dupuis4, Christophe Fabron2, Daniela Fantinel3, G. Farisato3, Philippe Feautrier1, Enrico Fedrigo9, Thierry Fusco2, Thierry Fusco5, P. Gigan4, Christian Ginski13, Christian Ginski14, Julien Girard15, Julien Girard1, Enrico Giro3, D. Gisler6, L. Gluck1, Cecile Gry2, Th. Henning8, Norbert Hubin9, Emmanuel Hugot2, S. Incorvaia3, M. Jaquet2, M. Kasper9, Eric Lagadec10, Anne-Marie Lagrange1, H. Le Coroller2, D. Le Mignant2, B. Le Ruyet4, G. Lessio3, J. L. Lizon9, M. Llored2, Lars Lundin9, F. Madec2, Yves Magnard1, M. Marteaud4, Patrice Martinez10, D. Maurel1, Francois Menard1, Dino Mesa3, O. Möller-Nilsson8, Thibaut Moulin1, C. Moutou2, Alain Origne2, J. Parisot4, A. Pavlov8, D. Perret4, J. Pragt, Pascal Puget1, P. Rabou1, Joany Andreina Manjarres Ramos8, J.-M. Reess4, F. Rigal, S. Rochat1, Ronald Roelfsema, Gérard Rousset4, A. Roux1, Michel Saisse2, Bernardo Salasnich3, E. Sant'Ambrogio3, Salvo Scuderi3, Damien Ségransan16, Arnaud Sevin4, Ralf Siebenmorgen9, Christian Soenke9, Eric Stadler1, Marcos Suarez9, D. Tiphène4, Massimo Turatto3, Stéphane Udry16, Farrokh Vakili10, L. B. F. M. Waters14, L. B. F. M. Waters17, L. Weber16, Francois Wildi16, Gérard Zins9, Alice Zurlo18, Alice Zurlo2 
TL;DR: The Spectro-Polarimetic High contrast imager for Exoplanets REsearch (SPHERE) was designed and built for the ESO Very Large Telescope (VLT) in Chile as discussed by the authors.
Abstract: Observations of circumstellar environments that look for the direct signal of exoplanets and the scattered light from disks have significant instrumental implications. In the past 15 years, major developments in adaptive optics, coronagraphy, optical manufacturing, wavefront sensing, and data processing, together with a consistent global system analysis have brought about a new generation of high-contrast imagers and spectrographs on large ground-based telescopes with much better performance. One of the most productive imagers is the Spectro-Polarimetic High contrast imager for Exoplanets REsearch (SPHERE), which was designed and built for the ESO Very Large Telescope (VLT) in Chile. SPHERE includes an extreme adaptive optics system, a highly stable common path interface, several types of coronagraphs, and three science instruments. Two of them, the Integral Field Spectrograph (IFS) and the Infra-Red Dual-band Imager and Spectrograph (IRDIS), were designed to efficiently cover the near-infrared range in a single observation for an efficient search of young planets. The third instrument, ZIMPOL, was designed for visible polarimetric observation to look for the reflected light of exoplanets and the light scattered by debris disks. These three scientific instruments enable the study of circumstellar environments at unprecedented angular resolution, both in the visible and the near-infrared. In this work, we thoroughly present SPHERE and its on-sky performance after four years of operations at the VLT.

378 citations


Cited by
More filters
01 Apr 2003
TL;DR: The EnKF has a large user group, and numerous publications have discussed applications and theoretical aspects of it as mentioned in this paper, and also presents new ideas and alternative interpretations which further explain the success of the EnkF.
Abstract: The purpose of this paper is to provide a comprehensive presentation and interpretation of the Ensemble Kalman Filter (EnKF) and its numerical implementation. The EnKF has a large user group, and numerous publications have discussed applications and theoretical aspects of it. This paper reviews the important results from these studies and also presents new ideas and alternative interpretations which further explain the success of the EnKF. In addition to providing the theoretical framework needed for using the EnKF, there is also a focus on the algorithmic formulation and optimal numerical implementation. A program listing is given for some of the key subroutines. The paper also touches upon specific issues such as the use of nonlinear measurements, in situ profiles of temperature and salinity, and data which are available with high frequency in time. An ensemble based optimal interpolation (EnOI) scheme is presented as a cost-effective approach which may serve as an alternative to the EnKF in some applications. A fairly extensive discussion is devoted to the use of time correlated model errors and the estimation of model bias.

2,975 citations

Journal ArticleDOI
TL;DR: This survey provides the reader with comprehensive details on the use of space-based optical backhaul links in order to provide high capacity and low cost backhaul solutions.
Abstract: In recent years, free space optical (FSO) communication has gained significant importance owing to its unique features: large bandwidth, license free spectrum, high data rate, easy and quick deployability, less power, and low mass requirements. FSO communication uses optical carrier in the near infrared band to establish either terrestrial links within the Earth’s atmosphere or inter-satellite/deep space links or ground-to-satellite/satellite-to-ground links. It also finds its applications in remote sensing, radio astronomy, military, disaster recovery, last mile access, backhaul for wireless cellular networks, and many more. However, despite of great potential of FSO communication, its performance is limited by the adverse effects (viz., absorption, scattering, and turbulence) of the atmospheric channel. Out of these three effects, the atmospheric turbulence is a major challenge that may lead to serious degradation in the bit error rate performance of the system and make the communication link infeasible. This paper presents a comprehensive survey on various challenges faced by FSO communication system for ground-to-satellite/satellite-to-ground and inter-satellite links. It also provides details of various performance mitigation techniques in order to have high link availability and reliability. The first part of this paper will focus on various types of impairments that pose a serious challenge to the performance of optical communication system for ground-to-satellite/satellite-to-ground and inter-satellite links. The latter part of this paper will provide the reader with an exhaustive review of various techniques both at physical layer as well as at the other layers (link, network, or transport layer) to combat the adverse effects of the atmosphere. It also uniquely presents a recently developed technique using orbital angular momentum for utilizing the high capacity advantage of optical carrier in case of space-based and near-Earth optical communication links. This survey provides the reader with comprehensive details on the use of space-based optical backhaul links in order to provide high capacity and low cost backhaul solutions.

970 citations

Journal ArticleDOI
TL;DR: A review of the current knowledge of the occurrence of planets around other stars, their orbital distances and eccentricities, the orbital spacings and mutual inclinations in multi-planet systems, the orientation of the host star's rotation axis, and the properties of planets in binary-star systems can be found in this paper.
Abstract: The basic geometry of the Solar System—the shapes, spacings, and orientations of the planetary orbits—has long been a subject of fascination as well as inspiration for planet-formation theories. For exoplanetary systems, those same properties have only recently come into focus. Here we review our current knowledge of the occurrence of planets around other stars, their orbital distances and eccentricities, the orbital spacings and mutual inclinations in multiplanet systems, the orientation of the host star's rotation axis, and the properties of planets in binary-star systems.

824 citations

Journal ArticleDOI
TL;DR: In this paper, a new method to achieve point-spread function (PSF) subtractions for high-contrast imaging using principal component analysis that is applicable to both point sources or extended objects (disks) is described.
Abstract: We describe a new method to achieve point-spread function (PSF) subtractions for high-contrast imaging using principal component analysis that is applicable to both point sources or extended objects (disks). Assuming a library of reference PSFs, a Karhunen–Lo` eve transform of these references is used to create an orthogonal basis of eigenimages on which the science target is projected. For detection this approach provides comparable suppression to the Locally Optimized Combination of Images (LOCI) algorithm, albeit with increased robustness to the algorithm parameters and speed enhancement. For characterization of detected sources, the method enables forward modeling of astrophysical sources. This alleviates the biases in the astrometry and photometry of discovered faint sources, which are usually associated with LOCI-based PSF subtractions schemes. We illustrate the algorithm performance using archival Hubble Space Telescope images, but the approach may also be considered for ground-based data acquired with angular differential imaging or integral-field spectrographs.

677 citations

Proceedings ArticleDOI
TL;DR: The SPHERE instrument as discussed by the authors was designed for direct detection and spectral characterization of extra-solar planets, where the main challenge consists in the very large contrast between the host star and the planet, typically inside the seeing halo.
Abstract: Direct detection and spectral characterization of extra-solar planets is one of the most exciting but also one of the most challenging areas in modern astronomy. The challenge consists in the very large contrast between the host star and the planet, larger than 12.5 magnitudes at very small angular separations, typically inside the seeing halo. The whole design of a "Planet Finder" instrument is therefore optimized towards reaching the highest contrast in a limited field of view and at short distances from the central star. Both evolved and young planetary systems can be detected, respectively through their reflected light and through the intrinsic planet emission. We present the science objectives, conceptual design and expected performance of the SPHERE instrument.

672 citations