scispace - formally typeset
Search or ask a question
Author

Cyril Seillet

Bio: Cyril Seillet is an academic researcher from Walter and Eliza Hall Institute of Medical Research. The author has contributed to research in topics: Innate lymphoid cell & Innate immune system. The author has an hindex of 24, co-authored 45 publications receiving 3366 citations. Previous affiliations of Cyril Seillet include University of Melbourne & French Institute of Health and Medical Research.

Papers
More filters
Journal ArticleDOI
22 Apr 2016-Science
TL;DR: In this paper, the authors identify Hobit and Blimp1 as central regulators of a universal program that instructs tissue retention in diverse tissue-resident lymphocyte populations, including NKT cells and liver-resident NK cells.
Abstract: Tissue-resident memory T (Trm) cells permanently localize to portals of pathogen entry, where they provide immediate protection against reinfection. To enforce tissue retention, Trm cells up-regulate CD69 and down-regulate molecules associated with tissue egress; however, a Trm-specific transcriptional regulator has not been identified. Here, we show that the transcription factor Hobit is specifically up-regulated in Trm cells and, together with related Blimp1, mediates the development of Trm cells in skin, gut, liver, and kidney in mice. The Hobit-Blimp1 transcriptional module is also required for other populations of tissue-resident lymphocytes, including natural killer T (NKT) cells and liver-resident NK cells, all of which share a common transcriptional program. Our results identify Hobit and Blimp1 as central regulators of this universal program that instructs tissue retention in diverse tissue-resident lymphocyte populations.

660 citations

Journal Article
TL;DR: It is shown that the transcription factor Hobit is specifically up-regulated in Trm cells and, together with related Blimp1, mediates the development of Trms cells in skin, gut, liver, and kidney in mice.
Abstract: Transcription factors define tissue T cells The immune system fights microbial invaders by maintaining multiple lines of defense. For instance, specialized memory T cells [resident memory T cells (Trms)] colonize portals of pathogen entry, such as the skin, lung, and gut, to quickly halt reinfections. Mackay et al. now report that in mice, Trms as well as other tissue-dwelling lymphocyte populations such as natural killer cells share a common transcriptional program driven by the related transcription factors Hobit and Blimp1. Tissue residency and retention of lymphocytes require expression of Hobit and Blimp1, which, among other functions, suppress genes that promote tissue exit. Science, this issue p. 459 Tissue-dwelling lymphocyte populations share a common transcriptional signature. Tissue-resident memory T (Trm) cells permanently localize to portals of pathogen entry, where they provide immediate protection against reinfection. To enforce tissue retention, Trm cells up-regulate CD69 and down-regulate molecules associated with tissue egress; however, a Trm-specific transcriptional regulator has not been identified. Here, we show that the transcription factor Hobit is specifically up-regulated in Trm cells and, together with related Blimp1, mediates the development of Trm cells in skin, gut, liver, and kidney in mice. The Hobit-Blimp1 transcriptional module is also required for other populations of tissue-resident lymphocytes, including natural killer T (NKT) cells and liver-resident NK cells, all of which share a common transcriptional program. Our results identify Hobit and Blimp1 as central regulators of this universal program that instructs tissue retention in diverse tissue-resident lymphocyte populations.

373 citations

Journal ArticleDOI
TL;DR: This work has identified cytokine-inducible SH2-containing protein (CIS, encoded by Cish) as a critical negative regulator of IL-15 signaling in NK cells, and uncovered a potent intracellular checkpoint in NK cell–mediated tumor immunity.
Abstract: The detection of aberrant cells by natural killer (NK) cells is controlled by the integration of signals from activating and inhibitory ligands and from cytokines such as IL-15. We identified cytokine-inducible SH2-containing protein (CIS, encoded by Cish) as a critical negative regulator of IL-15 signaling in NK cells. Cish was rapidly induced in response to IL-15, and deletion of Cish rendered NK cells hypersensitive to IL-15, as evidenced by enhanced proliferation, survival, IFN-γ production and cytotoxicity toward tumors. This was associated with increased JAK-STAT signaling in NK cells in which Cish was deleted. Correspondingly, CIS interacted with the tyrosine kinase JAK1, inhibiting its enzymatic activity and targeting JAK for proteasomal degradation. Cish(-/-) mice were resistant to melanoma, prostate and breast cancer metastasis in vivo, and this was intrinsic to NK cell activity. Our data uncover a potent intracellular checkpoint in NK cell-mediated tumor immunity and suggest possibilities for new cancer immunotherapies directed at blocking CIS function.

271 citations

Journal ArticleDOI
12 Jan 2012-Blood
TL;DR: It is shown, in humanized mice, that the TLR-7-mediated response of human pDCs is increased in female host mice relative to male, and a previously unappreciated role for estrogens in regulating the innate functions of p DCs is uncovered, which may account for sex-based differences in autoimmune and infectious diseases.

251 citations

Journal ArticleDOI
TL;DR: Loss of Nfil3 selectively reduces Peyer’s patch formation, impairing recruitment and distribution of lymphocytes and compromising immune responses to inflammatory and infectious agents.
Abstract: Innate lymphoid cell (ILC) populations protect against infection and are essential for lymphoid tissue formation and tissue remodeling after damage. Nfil3 is implicated in the function of adaptive immune lineages and NK cell development, but it is not yet known if Nfil3 regulates other innate lymphoid lineages. Here, we identify that Nfil3 is essential for the development of Peyer’s patches and ILC2 and ILC3 subsets. Loss of Nfil3 selectively reduced Peyer’s patch formation and was accompanied by impaired recruitment and distribution of lymphocytes within the patches. ILC subsets exhibited high Nfil3 expression and genetic deletion of Nfil3 severely compromised the development of all subsets. Subsequently, Nfil3−/− mice were highly susceptible to disease when challenged with inflammatory or infectious agents. Thus, we demonstrate that Nfil3 is a key regulator of the development of ILC subsets essential for immune protection in the lung and gut.

208 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is emphasized that sex is a biological variable that should be considered in immunological studies and contribute to variations in the incidence of autoimmune diseases and malignancies, susceptibility to infectious diseases and responses to vaccines in males and females.
Abstract: Males and females differ in their immunological responses to foreign and self-antigens and show distinctions in innate and adaptive immune responses. Certain immunological sex differences are present throughout life, whereas others are only apparent after puberty and before reproductive senescence, suggesting that both genes and hormones are involved. Furthermore, early environmental exposures influence the microbiome and have sex-dependent effects on immune function. Importantly, these sex-based immunological differences contribute to variations in the incidence of autoimmune diseases and malignancies, susceptibility to infectious diseases and responses to vaccines in males and females. Here, we discuss these differences and emphasize that sex is a biological variable that should be considered in immunological studies.

3,214 citations

Journal ArticleDOI
TL;DR: Cross-talk between cancer cells and the proximal immune cells ultimately results in an environment that fosters tumor growth and metastasis, and understanding the nature of this dialog will allow for improved therapeutics that simultaneously target multiple components of the TME, increasing the likelihood of favorable patient outcomes.
Abstract: Cancer development and progression occurs in concert with alterations in the surrounding stroma. Cancer cells can functionally sculpt their microenvironment through the secretion of various cytokines, chemokines, and other factors. This results in a reprogramming of the surrounding cells, enabling them to play a determinative role in tumor survival and progression. Immune cells are important constituents of the tumor stroma and critically take part in this process. Growing evidence suggests that the innate immune cells (macrophages, neutrophils, dendritic cells, innate lymphoid cells, myeloid-derived suppressor cells, and natural killer cells) as well as adaptive immune cells (T cells and B cells) contribute to tumor progression when present in the tumor microenvironment (TME). Cross-talk between cancer cells and the proximal immune cells ultimately results in an environment that fosters tumor growth and metastasis. Understanding the nature of this dialog will allow for improved therapeutics that simultaneously target multiple components of the TME, increasing the likelihood of favorable patient outcomes.

1,418 citations

Journal ArticleDOI
TL;DR: This Opinion article suggests that the mononuclear phagocyte system can be classified primarily by their ontogeny and secondarily by their location, function and phenotype, which permits a more robust classification during both steady-state and inflammatory conditions.
Abstract: The mononuclear phagocyte system (MPS) has historically been categorized into monocytes, dendritic cells and macrophages on the basis of functional and phenotypical characteristics. However, considering that these characteristics are often overlapping, the distinction between and classification of these cell types has been challenging. In this Opinion article, we propose a unified nomenclature for the MPS. We suggest that these cells can be classified primarily by their ontogeny and secondarily by their location, function and phenotype. We believe that this system permits a more robust classification during both steady-state and inflammatory conditions, with the benefit of spanning different tissues and across species.

1,404 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review features of microbiome-immunity crosstalk and their roles in health and disease, while providing examples of molecular mechanisms orchestrating these interactions in the intestine and extra-intestinal organs.
Abstract: The interplay between the commensal microbiota and the mammalian immune system development and function includes multifold interactions in homeostasis and disease. The microbiome plays critical roles in the training and development of major components of the host’s innate and adaptive immune system, while the immune system orchestrates the maintenance of key features of host-microbe symbiosis. In a genetically susceptible host, imbalances in microbiota-immunity interactions under defined environmental contexts are believed to contribute to the pathogenesis of a multitude of immune-mediated disorders. Here, we review features of microbiome-immunity crosstalk and their roles in health and disease, while providing examples of molecular mechanisms orchestrating these interactions in the intestine and extra-intestinal organs. We highlight aspects of the current knowledge, challenges and limitations in achieving causal understanding of host immune-microbiome interactions, as well as their impact on immune-mediated diseases, and discuss how these insights may translate towards future development of microbiome-targeted therapeutic interventions.

1,328 citations