scispace - formally typeset
Search or ask a question
Author

Cyrille Chatelain

Bio: Cyrille Chatelain is an academic researcher from University of Geneva. The author has contributed to research in topics: Biodiversity & Introduced species. The author has an hindex of 16, co-authored 30 publications receiving 1522 citations.

Papers
More filters
Journal ArticleDOI
03 Sep 2015-Nature
TL;DR: The results quantify for the first time the extent of plant naturalizations worldwide, and illustrate the urgent need for globally integrated efforts to control, manage and understand the spread of alien species.
Abstract: All around the globe, humans have greatly altered the abiotic and biotic environment with ever-increasing speed. One defining feature of the Anthropocene epoch is the erosion of biogeographical barriers by human-mediated dispersal of species into new regions, where they can naturalize and cause ecological, economic and social damage. So far, no comprehensive analysis of the global accumulation and exchange of alien plant species between continents has been performed, primarily because of a lack of data. Here we bridge this knowledge gap by using a unique global database on the occurrences of naturalized alien plant species in 481 mainland and 362 island regions. In total, 13,168 plant species, corresponding to 3.9% of the extant global vascular flora, or approximately the size of the native European flora, have become naturalized somewhere on the globe as a result of human activity. North America has accumulated the largest number of naturalized species, whereas the Pacific Islands show the fastest increase in species numbers with respect to their land area. Continents in the Northern Hemisphere have been the major donors of naturalized alien species to all other continents. Our results quantify for the first time the extent of plant naturalizations worldwide, and illustrate the urgent need for globally integrated efforts to control, manage and understand the spread of alien species.

704 citations

Journal ArticleDOI
12 Jul 2017-Preslia
TL;DR: The Global Naturalized Alien Flora (GloNAF) database as mentioned in this paper contains data on the distribution of naturalized alien plants in 483 mainland and 361 island regions of the world.
Abstract: Using the recently built Global Naturalized Alien Flora (GloNAF) database, containing data on the distribution of naturalized alien plants in 483 mainland and 361 island regions of the world, we describe patterns in diversity and geographic distribution of naturalized and invasive plant species, taxonomic, phylogenetic and life-history structure of the global naturalized flora as well as levels of naturalization and their determinants. The mainland regions with the highest numbers of naturalized aliens are some Australian states (with New South Wales being the richest on this continent) and several North American regions (of which California with 1753 naturalized plant species represents the world’s richest region in terms of naturalized alien vascular plants). England, Japan, New Zealand and the Hawaiian archipelago harbour most naturalized plants among islands or island groups. These regions also form the main hotspots of the regional levels of naturalization, measured as the percentage of naturalized aliens in the total flora of the region. Such hotspots of relative naturalized species richness appear on both the western and eastern coasts of North America, in north-western Europe, South Africa, south-eastern Australia, New Zealand, and India. High levels of island invasions by naturalized plants are concentrated in the Pacific, but also occur on individual islands across all oceans. The numbers of naturalized species are closely correlated with those of native species, with a stronger correlation and steeper increase for islands than mainland regions, indicating a greater vulnerability of islands to invasion by species that become successfully naturalized. South Africa, India, California, Cuba, Florida, Queensland and Japan have the highest numbers of invasive species. Regions in temperate and tropical zonobiomes harbour in total 9036 and 6774 naturalized species, respectively, followed by 3280 species naturalized in the Mediterranean zonobiome, 3057 in the subtropical zonobiome and 321 in the Arctic. The New World is richer in naturalized alien plants, with 9905 species compared to 7923 recorded in the Old World. While isolation is the key factor driving the level of naturalization on islands, zonobiomes differing in climatic regimes, and socioeconomy represented by per capita GDP, are central for mainland regions. The 11 most widely distributed species each occur in regions covering about one third of the globe or more in terms of the number of regions where they are naturalized and at least 35% of the Earth’s land surface in terms of those regions’ areas, with the most widely distributed species Sonchus oleraceus occuring in 48% of the regions that cover 42% of the world area. Other widely distributed species are Ricinus communis, Oxalis corniculata, Portulaca oleracea, Eleusine indica, Chenopodium album, Capsella bursa-pastoris, Stellaria media, Bidens pilosa, Datura stramonium and Echinochloa crus-galli. Using the occurrence as invasive rather than only naturalized yields a different ranking, with Lantana camara (120 regions out of 349 for which data on invasive status are known), Calotropis procera (118), Eichhornia crassipes (113), Sonchus oleraceus (108) and Leucaena leucocephala (103) on top. As to the life-history spectra, islands harbour more naturalized woody species (34.4%) thanmainland regions (29.5%), and fewer annual herbs (18.7% compared to 22.3%). Ranking families by their absolute numbers of naturalized species reveals that Compositae (1343 species), Poaceae (1267) and Leguminosae (1189) contribute most to the global naturalized alien flora. Some families are disproportionally represented by naturalized aliens on islands (Arecaceae, Araceae, Acanthaceae, Amaryllidaceae, Asparagaceae, Convolvulaceae, Rubiaceae, Malvaceae), and much fewer so on mainland (e.g. Brassicaceae, Caryophyllaceae, Boraginaceae). Relating the numbers of naturalized species in a family to its total global richness shows that some of the large species-rich families are over-represented among naturalized aliens (e.g. Poaceae, Leguminosae, Rosaceae, Amaranthaceae, Pinaceae), some under-represented (e.g. Euphorbiaceae, Rubiaceae), whereas the one richest in naturalized species, Compositae, reaches a value expected from its global species richness. Significant phylogenetic signal indicates that families with an increased potential of their species to naturalize are not distributed randomly on the evolutionary tree. Solanum (112 species), Euphorbia (108) and Carex (106) are the genera richest in terms of naturalized species; over-represented on islands are Cotoneaster, Juncus, Eucalyptus, Salix, Hypericum, Geranium and Persicaria, while those relatively richer in naturalized species on the mainland are Atriplex, Opuntia, Oenothera, Artemisia, Vicia, Galium and Rosa. The data presented in this paper also point to where information is lacking and set priorities for future data collection. The GloNAF database has potential for designing concerted action to fill such data gaps, and provide a basis for allocating resources most efficiently towards better understanding and management of plant invasions worldwide.

307 citations

Journal ArticleDOI
01 Jan 2019-Ecology
TL;DR: This dataset provides the Global Naturalized Alien Flora (GloNAF) database, version 1.2, which represents a data compendium on the occurrence and identity of naturalized alien vascular plant taxa across geographic regions around the globe.
Abstract: This dataset provides the Global Naturalized Alien Flora (GloNAF) database, version 1.2. GloNAF represents a data compendium on the occurrence and identity of naturalized alien vascular plant taxa across geographic regions (e.g. countries, states, provinces, districts, islands) around the globe. The dataset includes 13,939 taxa and covers 1,029 regions (including 381 islands). The dataset is based on 210 data sources. For each taxon-by-region combination, we provide information on whether the taxon is considered to be naturalized in the specific region (i.e. has established self-sustaining populations in the wild). Non-native taxa are marked as "alien", when it is not clear whether they are naturalized. To facilitate alignment with other plant databases, we provide for each taxon the name as given in the original data source and the standardized taxon and family names used by The Plant List Version 1.1 (http://www.theplantlist.org/). We provide an ESRI shapefile including polygons for each region and information on whether it is an island or a mainland region, the country and the Taxonomic Databases Working Group (TDWG) regions it is part of (TDWG levels 1-4). We also provide several variables that can be used to filter the data according to quality and completeness of alien taxon lists, which vary among the combinations of regions and data sources. A previous version of the GloNAF dataset (version 1.1) has already been used in several studies on, for example, historical spatial flows of taxa between continents and geographical patterns and determinants of naturalization across different taxonomic groups. We intend the updated and expanded GloNAF version presented here to be a global resource useful for studying plant invasions and changes in biodiversity from regional to global scales. We release these data into the public domain under a Creative Commons Zero license waiver (https://creativecommons.org/share-your-work/public-domain/cc0/). When you use the data in your publication, we request that you cite this data paper. If GloNAF is a major part of the data analyzed in your study, you should consider inviting the GloNAF core team (see Metadata S1: Originators in the Overall project description) as collaborators. If you plan to use the GloNAF dataset, we encourage you to contact the GloNAF core team to check whether there have been recent updates of the dataset, and whether similar analyses are already ongoing.

163 citations

BookDOI
01 Jan 2004
TL;DR: In this article, the changes in forest cover in Cote d'Ivoire from 1990 to 2000 based on satellite images were investigated at four scales of resolution, namely, the total forest area in West Africa, in particular the total protected area, was analyzed, and forest fragmentation in detail for 8 blocks of 20×20 km in Abidjan.
Abstract: Results are given of a study on the changes in forest cover in Cote d'Ivoire from 1990 to 2000 based on satellite images. The changes in forest cover were investigated at 4 scales of resolution. Firstly, the total forest area in West Africa was determined. Then, the total forest cover of Cote d'Ivoire, in particular the total protected area, was analysed. Thirdly, the forest cover in the region of Abidjan was also analysed as an example for the country. Finally, forest fragmentation was investigated in detail for 8 blocks of 20×20 km in Abidjan.

126 citations

Journal ArticleDOI
19 Mar 2013-PLOS ONE
TL;DR: The results suggest that golden-crowned sifakas exhibit remarkable dietary diversity with at least 130 plant species belonging to 80 genera and 49 different families suggesting a high flexibility of foraging strategies and an influence of both habitat type and openness on diet composition.
Abstract: In tropical regions, most primary ecosystems have been replaced by mosaic landscapes in which species must cope with a large shift in the distribution of their habitat and associated food resources Primates are particularly vulnerable to habitat modifications Most species persist in small fragments surrounded by complex human-mediated matrices whose structure and connectivity may strongly influence their dispersal and feeding behavior Behavioral plasticity appears to be a crucial parameter governing the ability of organisms to exploit the resources offered by new matrix habitats and thus to persist in fragmented habitats In this study, we were interested in the dietary plasticity of the golden-crowned sifaka (Propithecus tattersalli), an endangered species of lemur, found only in the Daraina region in north-eastern Madagascar We used a DNA-based approach combining the barcoding concept and Illumina next-generation sequencing to (i) describe the species diet across its entire range and (ii) evaluate the influence of landscape heterogeneity on diet diversity and composition Faeces from 96 individuals were sampled across the entire species range and their contents were analyzed using the trnL metabarcoding approach In parallel, we built a large DNA reference database based on a checklist of the plant species of the Daraina region Our results suggest that golden-crowned sifakas exhibit remarkable dietary diversity with at least 130 plant species belonging to 80 genera and 49 different families We highlighted an influence of both habitat type and openness on diet composition suggesting a high flexibility of foraging strategies Moreover, we observed the presence of numerous cultivated and naturalized plants in the faeces of groups living in forest edge areas Overall, our findings support our initial expectation that P tattersalli is able to cope with the current level of alteration of the landscape and confirm our previous results on the distribution and the dispersal ability of this species

110 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Abstract: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201

14,171 citations

Journal ArticleDOI

6,278 citations

Journal ArticleDOI
02 Sep 2011-Science
TL;DR: Compared crop yields and densities of bird and tree species across gradients of agricultural intensity in southwest Ghana and northern India, land sparing is a more promising strategy for minimizing negative impacts of food production, at both current and anticipated future levels of production.
Abstract: The question of how to meet rising food demand at the least cost to biodiversity requires the evaluation of two contrasting alternatives: land sharing, which integrates both objectives on the same land; and land sparing, in which high-yield farming is combined with protecting natural habitats from conversion to agriculture. To test these alternatives, we compared crop yields and densities of bird and tree species across gradients of agricultural intensity in southwest Ghana and northern India. More species were negatively affected by agriculture than benefited from it, particularly among species with small global ranges. For both taxa in both countries, land sparing is a more promising strategy for minimizing negative impacts of food production, at both current and anticipated future levels of production.

1,383 citations

01 Apr 2016
TL;DR: The evidence suggests that of the various proposed dates two do appear to conform to the criteria to mark the beginning of the Anthropocene: 1610 and 1964.
Abstract: Time is divided by geologists according to marked shifts in Earth's state. Recent global environmental changes suggest that Earth may have entered a new human-dominated geological epoch, the Anthropocene. Here we review the historical genesis of the idea and assess anthropogenic signatures in the geological record against the formal requirements for the recognition of a new epoch. The evidence suggests that of the various proposed dates two do appear to conform to the criteria to mark the beginning of the Anthropocene: 1610 and 1964. The formal establishment of an Anthropocene Epoch would mark a fundamental change in the relationship between humans and the Earth system.

1,173 citations

Journal ArticleDOI
TL;DR: Improved international cooperation is crucial to reduce the impacts of invasive alien species on biodiversity, ecosystem services, and human livelihoods, as synergies with other global changes are exacerbating current invasions and facilitating new ones, thereby escalating the extent and impacts of invaders.
Abstract: Biological invasions are a global consequence of an increasingly connected world and the rise in human population size The numbers of invasive alien species – the subset of alien species that spread widely in areas where they are not native, affecting the environment or human livelihoods – are increasing Synergies with other global changes are exacerbating current invasions and facilitating new ones, thereby escalating the extent and impacts of invaders Invasions have complex and often immense long‐term direct and indirect impacts In many cases, such impacts become apparent or problematic only when invaders are well established and have large ranges Invasive alien species break down biogeographic realms, affect native species richness and abundance, increase the risk of native species extinction, affect the genetic composition of native populations, change native animal behaviour, alter phylogenetic diversity across communities, and modify trophic networks Many invasive alien species also change ecosystem functioning and the delivery of ecosystem services by altering nutrient and contaminant cycling, hydrology, habitat structure, and disturbance regimes These biodiversity and ecosystem impacts are accelerating and will increase further in the future Scientific evidence has identified policy strategies to reduce future invasions, but these strategies are often insufficiently implemented For some nations, notably Australia and New Zealand, biosecurity has become a national priority There have been long‐term successes, such as eradication of rats and cats on increasingly large islands and biological control of weeds across continental areas However, in many countries, invasions receive little attention Improved international cooperation is crucial to reduce the impacts of invasive alien species on biodiversity, ecosystem services, and human livelihoods Countries can strengthen their biosecurity regulations to implement and enforce more effective management strategies that should also address other global changes that interact with invasions

677 citations