scispace - formally typeset
Search or ask a question
Author

D.A. Hems

Bio: D.A. Hems is an academic researcher from St George's Hospital. The author has contributed to research in topics: Vasopressin & Hepatocyte. The author has an hindex of 10, co-authored 15 publications receiving 674 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Light is shed on the relative significance of liver and adipose tissue in fatty acid synthesis in mice, on the mino importance of glucose in hepatic lipogenesis, and on the alterations in the rate of fatty acids synthesis in genetically obese mice.
Abstract: 1. The synthesis of long-chain fatty acids de novo was measured in the liver and in regions of adipose tissue in intact normal and genetically obses mice throughout the daily 24h cycle. 2. The total rate of synthesis, as measured by the rate of incorporation of 3H from 3H2O into fatty acid, was highest during the dark period, in liver and adipose tissue of lean or obese mice. 3. The rate of incorporation of 14C from [U-14C]glucose into fatty acid was also followed (in the same mice). The 14C/3H ratios were higher by a factor of 5-20 in parametrial and scapular fat than that in liver. This difference was less marked during the dark period (of maximum fatty acid synthesis). 4. In normal mice, the total rate of fatty acid synthesis in the liver was about twofold greater than that in all adipose tissue regions combined. 5. In obese mice, the rate of fatty acid synthesis was more rapid than in lean mice, in both liver and adipose tissue. Most of the extra lipogenesis occurred in adipose tissue. The extra hepatic fatty acids synthesized in obese mice were located in triglyceride rather than phospholipid. 6. In adipose tissue of normal mice, the rate of fatty acid synthesis was most rapid in the intra-abdominal areas and in brown fat. In obese mice, all regions exhibited rapid rates of fatty acid synthesis. 7. These results shed light on the relative significance of liver and adipose tissue (i.e. the adipose 'organ') in fatty acid synthesis in mice, on the mino importance of glucose in hepatic lipogenesis, and on the alterations in the rate of fatty acid synthesis in genetically obese mice.

181 citations

Journal ArticleDOI
TL;DR: The potency of the stimulatory effects of vasopressin and angiotensin on hepatic gluconeogenesis suggests they are operative in vivo and Ca2+ plays a role in the stimulation by these hormones.
Abstract: 1. In hepatocytes from starved rats, vasopressin, angiotensin (angiotensin II) and oxytocin stimulated gluconeogenesis from lactate by 25--50%; minimal effective concentrations were about 0.02pM, 1 nM and 0.2 nM respectively. 2. Vasopressin and angiotensin also stimulated gluconeogenesis from alanine, pyruvate, serine and glycerol. EGTA decreased gluconeogenesis from these substrates. 3. Hormonal stimulation of gluconeogenesis from lactate was abolished in the absence of extracellular Ca2+. 4. Insulin did not prevent stimulation of gluconeogenesis by vasopressin or angiotensin. 5. The potency of the stimulatory effects of vasopressin and angiotensin on hepatic gluconeogenesis suggests they are operative in vivo. Also, the data suggest that Ca2+ plays a role in the stimulation by these hormones.

111 citations

Journal ArticleDOI
TL;DR: It is demonstrated that hepatocytes can respond to low concentrations of vasopressin and angiotensin II, i.e. these effects are likely to be relevant in the intact animal.
Abstract: 1. The hormonal control of glycogen breakdown was studied in hepatocytes isolated from livers of fed rats. 2. Glucose release was stimulated by [8-arginine]vasopressin (10pm–10nm), oxytocin (1nm–1μm), and angiotensin II (1nm–0.1μm). These responses are all at least as sensitive to hormone as is glucose output in the perfused rat liver. 3. The effect of these three hormones on glucose release was critically dependent on extracellular Ca2+, unlike that of glucagon. Half-maximal restoration of the vasopressin response occurred if 0.3mm-Ca2+ was added back to the incubation medium. 4. Glycogen breakdown was more than sufficient to account for the glucose released into the medium, in the absence or presence of hormones. Lactate release by hepatocytes was not affected by vasopressin, but was inhibited by glucagon. 5. If Ca2+ was omitted from the extracellular medium, vasopressin stimulated glycogenolysis, but not glucose release. 6. The phosphorylase a content of hepatocytes was increased by vasopressin, oxytocin and angiotensin II; minimum effective concentrations were 0.1pm, 0.1nm and 10pm respectively. This response was also dependent on Ca2+. 7. These results demonstrate that hepatocytes can respond to low concentrations of vasopressin and angiotensin II, i.e. these effects are likely to be relevant in the intact animal. The role of extracellular Ca2+ in the effects of these hormones on hepatic glycogenolysis and glucose release is discussed.

95 citations

Journal ArticleDOI
TL;DR: The relative abilities of seven vasopressin-like peptides to activate hepatic glycogen phosphorylase and stimulate phosphate incorporation into phosphatidylinositol were compared.
Abstract: The relative abilities of seven vasopressin-like peptides to activate hepatic glycogen phosphorylase and stimulate phosphate incorporation into phosphatidylinositol were compared. Although the individual peptides differed in their potencies, the concentrations required to stimulate phosphatidylinositol metabolism were always greater (about 10 times) than those needed to activate phosphorylase. The molecular specificity of the hepatic vasopressin receptor and the role of vasopressin-stimulated phosphatidylinositol turnover are discussed.

77 citations

Journal ArticleDOI
TL;DR: The results reflect enhanced turnover of PI, with the stimulus acting to enhance the breakdown of PI to 1,2-diacylglycerol within the plasma membrane.

66 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The genes encoding two DGAT enzymes, DGAT1 and DGAT2, were identified in the past decade, and the use of molecular tools, including mice deficient in either enzyme, has shed light on their functions.

891 citations

Journal ArticleDOI
13 Feb 1986-Nature
TL;DR: It is shown here, by means of aequorin measurements in single, isolated rat hepatocytes, that the free Ca response to these agonists consists of a series of transients, which are more complex than hitherto suspected.
Abstract: In the stressed animal, the vasoactive hormones vasopressin and angiotensin-II and the neurotransmitter noradrenaline induce liver cells to release glucose from glycogen. The intracellular signal that links the cell-surface receptors for noradrenaline (alpha 1) and vasoactive peptides to activation of glycogenolysis is known to be a rise in the cytoplasmic concentration of free calcium ions (free Ca). The receptors for these agonists induce the hydrolysis of phosphatidylinositol 4,5-bisphosphate, a minor plasmalemma lipid, to produce inositol trisphosphate and diacylglycerol. Inositol trisphosphate has been shown to mobilize intracellular calcium in hepatocytes. We show here, by means of aequorin measurements in single, isolated rat hepatocytes, that the free Ca response to these agonists consists of a series of transients. Each transient rose within 3 s to a peak free Ca of at least 600 nM and had a duration of approximately 7 s. The transients were repeated at intervals of 0.3-4 min, depending on agonist concentration. Between transients, free Ca returned to the resting level of approximately 200 nM. Clearly, the mechanisms controlling free Ca in hepatocytes are more complex than hitherto suspected.

728 citations

Journal ArticleDOI
11 Mar 2011-Science
TL;DR: It is shown that genomic recruitment of HDAC3 by Rev-erbα directs a circadian rhythm of histone acetylation and gene expression required for normal hepatic lipid homeostasis.
Abstract: Disruption of the circadian clock exacerbates metabolic diseases, including obesity and diabetes. We show that histone deacetylase 3 (HDAC3) recruitment to the genome displays a circadian rhythm in mouse liver. Histone acetylation is inversely related to HDAC3 binding, and this rhythm is lost when HDAC3 is absent. Although amounts of HDAC3 are constant, its genomic recruitment in liver corresponds to the expression pattern of the circadian nuclear receptor Rev-erbα. Rev-erbα colocalizes with HDAC3 near genes regulating lipid metabolism, and deletion of HDAC3 or Rev-erbα in mouse liver causes hepatic steatosis. Thus, genomic recruitment of HDAC3 by Rev-erbα directs a circadian rhythm of histone acetylation and gene expression required for normal hepatic lipid homeostasis.

618 citations

Journal ArticleDOI
19 Apr 2012-Nature
TL;DR: It is reported that adipose tissue GLUT4 regulates the expression of carbohydrate-responsive-element-binding protein (ChREBP; also known as MLXIPL), a transcriptional regulator of lipogenic and glycolytic genes, and adipose ChREBP is a major determinant of adipOSE tissue fatty acid synthesis and systemic insulin sensitivity.
Abstract: The prevalence of obesity and type 2 diabetes is increasing worldwide and threatens to shorten lifespan. Impaired insulin action in peripheral tissues is a major pathogenic factor. Insulin stimulates glucose uptake in adipose tissue through the GLUT4 (also known as SLC2A4) glucose transporter, and alterations in adipose tissue GLUT4 expression or function regulate systemic insulin sensitivity. Downregulation of human and mouse adipose tissue GLUT4 occurs early in diabetes development. Here we report that adipose tissue GLUT4 regulates the expression of carbohydrate-responsive-element-binding protein (ChREBP; also known as MLXIPL), a transcriptional regulator of lipogenic and glycolytic genes. Furthermore, adipose ChREBP is a major determinant of adipose tissue fatty acid synthesis and systemic insulin sensitivity. We find a new mechanism for glucose regulation of ChREBP: glucose-mediated activation of the canonical ChREBP isoform (ChREBP-α) induces expression of a novel, potent isoform (ChREBP-β) that is transcribed from an alternative promoter. ChREBP-β expression in human adipose tissue predicts insulin sensitivity, indicating that it may be an effective target for treating diabetes.

493 citations

Journal ArticleDOI
28 May 1992-Nature
TL;DR: The cloning of the rat kidney V2 AVP receptor complementary DNA that encodes a 370-amino-acid protein with a transmembrane topography characteristic of G protein-coupled receptors, and with similarity to the Via (hepatic) AVP receptors2 in its seven membrane-spanning domains is reported.
Abstract: The antidiuretic effect of arginine vasopressin (AVP) is mediated by renal-type (V2) receptors linked to adenylyl cyclase. We report here the cloning of the rat kidney V2 AVP receptor complementary DNA that encodes a 370-amino-acid protein with a transmembrane topography characteristic of G protein-coupled receptors, and with similarity to the V1a (hepatic) AVP receptor in its seven membrane-spanning domains. Expression of the cloned cDNA in mammalian cells showed specific ligand binding and activity characteristic of the native V2 AVP receptor. The receptor messenger RNA is detected only in the kidney. The human V2 receptor gene has been localized to the long arm of the X chromosome close to the locus for nephrogenic diabetes insipidus, an X-linked recessive disorder characterized by renal resistance to the antidiuretic action of AVP.

488 citations