scispace - formally typeset
Search or ask a question
Author

D. A. Walters

Bio: D. A. Walters is an academic researcher from Rice University. The author has contributed to research in topics: Carbon nanotube & Optical properties of carbon nanotubes. The author has an hindex of 8, co-authored 10 publications receiving 2796 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors show that the electrical resistivity exhibits moderate anisotropy with respect to the alignment axis, while the thermopower is the same when measured parallel or perpendicular to this axis.
Abstract: Dense, thick films of aligned single wall carbon nanotubes and nanotube ropes have been produced by filtration/deposition from suspension in strong magnetic fields. Electrical resistivity exhibits moderate anisotropy with respect to the alignment axis, while the thermopower is the same when measured parallel or perpendicular to this axis. Both parameters have identical temperature dependencies in the two orientations. Thermal conductivity in the parallel direction exceeds 200 W/mK, within a decade of graphite.

850 citations

Journal ArticleDOI
TL;DR: In this paper, the authors induced large elastic strains in ropes of single-wall carbon nanotubes, using an atomic force microscope in lateral force mode, and the maximum strain observed, 5.8±0.9%, gives a lower bound of 45±7 GPa for the tensile strength (specifically, yield stress) of single wall nanotube ropes.
Abstract: We have induced large elastic strains in ropes of single-wall carbon nanotubes, using an atomic force microscope in lateral force mode. Freely suspended ropes were observed to deform as elastic strings with tension proportional to elongation. Ropes were elastically deformed over >10 cycles without showing signs of plastic deformation. The maximum strain observed, 5.8±0.9%, gives a lower bound of 45±7 GPa for the tensile strength (specifically, yield stress) of single-wall nanotube ropes.

677 citations

Journal ArticleDOI
TL;DR: In this paper, a method for placing individual carbon nanotubes at specific locations and orientations in such a way that the carbon wires contact metal electrodes has been proposed, which is potentially very important for fabrication of simple electrical circuits with carbon wires.

563 citations

Patent
27 Oct 2000
TL;DR: In this paper, a method for the creation of macroscopic materials and objects comprising aligned carbon nanotube segments is presented. But the method is not suitable for the fabrication of large-scale objects.
Abstract: The present invention is directed to the creation of macroscopic materials and objects comprising aligned nanotube segments. The invention entails aligning single-wall carbon nanotube (SWNT) segments that are suspended in a fluid medium and then removing the aligned segments from suspension in a way that macroscopic, ordered assemblies of SWNT are formed. The invention is further directed to controlling the natural proclivity of nanotube segments to self assemble into ordered structures by modifying the environment of the nanotubes and the history of that environment prior to and during the process. The materials and objects are 'macroscopic' in that they are large enough to be seen without the aid of a microscope or of the dimensions of such objects. These macroscopic, ordered SWNT materials and objects have the remarkable physical, electrical, and chemical properties that SWNT exhibit on the microscopic scale because they are comprised of nanotubes, each of which is aligned in the same direction and in contact with its nearest neighbors. An ordered assembly of closest SWNT also serves as a template for growth of more and larger ordered assemblies. An ordered assembly further serves as a foundation for post processing treatments that modify the assembly internally to specifically enhance selected material properties such as shear strength, tensile strength, compressive strength, toughness, electrical conductivity, and thermal conductivity.

247 citations

Journal ArticleDOI
TL;DR: In this paper, the first macroscopic objects comprised of highly aligned single-wall carbon nanotubes (SWNTs) were produced by producing a suspension of SWNT segments, introducing the suspension to a strong magnetic field to align the segments, and filtering the suspension in the magnetic field.

243 citations


Cited by
More filters
Journal ArticleDOI
02 Aug 2002-Science
TL;DR: Many potential applications have been proposed for carbon nanotubes, including conductive and high-strength composites; energy storage and energy conversion devices; sensors; field emission displays and radiation sources; hydrogen storage media; and nanometer-sized semiconductor devices, probes, and interconnects.
Abstract: Many potential applications have been proposed for carbon nanotubes, including conductive and high-strength composites; energy storage and energy conversion devices; sensors; field emission displays and radiation sources; hydrogen storage media; and nanometer-sized semiconductor devices, probes, and interconnects. Some of these applications are now realized in products. Others are demonstrated in early to advanced devices, and one, hydrogen storage, is clouded by controversy. Nanotube cost, polydispersity in nanotube type, and limitations in processing and assembly methods are important barriers for some applications of single-walled nanotubes.

9,693 citations

Journal ArticleDOI
28 Jan 2000-Science
TL;DR: The tensile strengths of individual multiwalled carbon nanotubes (MWCNTs) were measured with a "nanostressing stage" located within a scanning electron microscope and a variety of structures were revealed, such as a nanotube ribbon, a wave pattern, and partial radial collapse.
Abstract: The tensile strengths of individual multiwalled carbon nanotubes (MWCNTs) were measured with a “nanostressing stage” located within a scanning electron microscope. The tensile-loading experiment was prepared and observed entirely within the microscope and was recorded on video. The MWCNTs broke in the outermost layer (“sword-in-sheath” failure), and the tensile strength of this layer ranged from 11 to 63 gigapascals for the set of 19 MWCNTs that were loaded. Analysis of the stress-strain curves for individual MWCNTs indicated that the Young's modulus E of the outermost layer varied from 270 to 950 gigapascals. Transmission electron microscopic examination of the broken nanotube fragments revealed a variety of structures, such as a nanotube ribbon, a wave pattern, and partial radial collapse.

5,011 citations

Journal ArticleDOI
TL;DR: A review of recent advances in carbon nanotubes and their composites can be found in this article, where the authors examine the research work reported in the literature on the structure and processing of carbon Nanotubes.

4,709 citations

Journal ArticleDOI
TL;DR: In this article, a review of polymer nanocomposites with single-wall or multi-wall carbon nanotubes is presented, and the current challenges to and opportunities for efficiently translating the extraordinary properties of carbon-nanotubes to polymer matrices are summarized.
Abstract: We review the present state of polymer nanocomposites research in which the fillers are single-wall or multiwall carbon nanotubes. By way of background we provide a brief synopsis about carbon nanotube materials and their suspensions. We summarize and critique various nanotube/polymer composite fabrication methods including solution mixing, melt mixing, and in situ polymerization with a particular emphasis on evaluating the dispersion state of the nanotubes. We discuss mechanical, electrical, rheological, thermal, and flammability properties separately and how these physical properties depend on the size, aspect ratio, loading, dispersion state, and alignment of nanotubes within polymer nanocomposites. Finally, we summarize the current challenges to and opportunities for efficiently translating the extraordinary properties of carbon nanotubes to polymer matrices in hopes of facilitating progress in this emerging area.

3,239 citations

Journal ArticleDOI
TL;DR: An unusually high value, lambda approximately 6600 W/m K, is suggested for an isolated (10,10) nanotube at room temperature, comparable to the thermal conductivity of a hypothetical isolated graphene monolayer or diamond.
Abstract: Recently discovered carbon nanotubes have exhibited many unique material properties including very high thermal conductivity. Strong sp 2 bonding configurations in carbon network and nearly perfect self-supporting atomic structure in nanotubes give unusually high phonon-dominated thermal conductivity along the tube axis, possibly even surpassing that of other carbon-based materials such as diamond and graphite (in plane). In this chapter, we explore theoretical and experimental investigations for the thermal-transport properties of these materials.

3,011 citations