scispace - formally typeset
Search or ask a question
Author

D.B. Dyke

Bio: D.B. Dyke is an academic researcher from University of Michigan. The author has contributed to research in topics: Transplantation & Ventricular assist device. The author has an hindex of 15, co-authored 30 publications receiving 1615 citations. Previous affiliations of D.B. Dyke include Baylor College of Medicine & The Feinstein Institute for Medical Research.

Papers
More filters
Journal ArticleDOI
TL;DR: Short‐term outcomes have improved, based on the observation that rates of rejection within the first year post‐transplant have diminished, and use of antibody treatment for rejection during the first post-transplant year for most organs declined.

223 citations

Journal ArticleDOI
TL;DR: In appropriately selected high-risk patients, the rate of LVAD survival after initial ECMO support was not significantly different from the survival rate after LVAD support alone, and an initial period of resuscitation with ECMO is an effective strategy to salvage patients with extreme hemodynamic instability and multiorgan injury.
Abstract: Background—The use of extracorporeal life support (extracorporeal membrane oxygenation [ECMO]) as a direct bridge to heart transplant in adult patients is associated with poor survival. Similarly, the use of an implantable left ventricular assist device (LVAD) to salvage patients with cardiac arrest, severe hemodynamic instability, and multiorgan failure results in poor outcome. The use of LVAD implant in patients who present with cardiogenic shock who have not been evaluated for transplantation or who have sustained a recent myocardial infarction also raises concerns. ECMO may provide reasonable short-term support to patients with severe hemodynamic instability, permit recovery of multiorgan injury, and allow time to complete a transplant evaluation before long-term circulatory support with an implantable LVAD is instituted. After acquisition of the HeartMate LVAD (Thermo Cardiosystems, Inc), we began using ECMO as a bridge to an implantable LVAD and, subsequently, to transplantation in selected high-ris...

221 citations

Journal ArticleDOI
TL;DR: Proteasome activity in HCM and failing human hearts is impaired in the absence of changes in proteasome protein content or availability of proteolytic active sites, providing strong evidence that posttranslational modifications to the proteasomes may account for defective protein degradation in human cardiomyopathies.
Abstract: Background— The ubiquitin proteasome system maintains a dynamic equilibrium of proteins and prevents accumulation of damaged and misfolded proteins, yet its role in human cardiac dysfunction is not well understood. The present study evaluated ubiquitin proteasome system function in human heart failure and hypertrophic cardiomyopathy (HCM). Methods and Results— Proteasome function was studied in human nonfailing donor hearts, explanted failing hearts, and myectomy samples from patients with HCM. Proteasome proteolytic activities were markedly reduced in failing and HCM hearts compared with nonfailing hearts (P<0.01). This activity was partially restored after mechanical unloading in failing hearts (P<0.01) and was significantly lower in HCM hearts with pathogenic sarcomere mutations than in those lacking these mutations (P<0.05). There were no changes in the protein content of ubiquitin proteasome system subunits (ie, 11S, 20S, and 19S) or in active-site labeling of the 20S proteolytic subunit β-5 among gr...

217 citations

Journal ArticleDOI
TL;DR: The HeartMate II continuous-flow left ventricular assist device improves renal and hepatic function in advanced heart failure patients who are being bridged to transplantation, without evidence of detrimental effects from reduced pulsatility over a 6-month time period.
Abstract: Background— The effects of continuous blood flow and reduced pulsatility on major organ function have not been studied in detail. Methods and Results— We evaluated renal (creatinine and blood urea nitrogen) and hepatic (aspartate transaminase, alanine transaminase, and total bilirubin) function in 309 (235 male, 74 female) advanced heart failure patients who had been supported with the HeartMate II continuous-flow left ventricular assist device for bridge to transplantation. To determine whether patients with impaired renal and hepatic function improve over time with continuous-flow left ventricular assist device support or whether there are any detrimental effects in patients with normal organ function, we divided patients into those with above-normal and normal laboratory values before implantation and measured blood chemistry over time during left ventricular assist device support. There were significant improvements over 6 months in all parameters in the above-normal groups, with values in the normal ...

189 citations

Journal ArticleDOI
TL;DR: The HeartMate XVE or II provided equivalent degrees of hemodynamic support and exercise capacity, and the XVE was associated with greater left ventricular volume unloading.
Abstract: Background— Continuous-flow rotary pumps with axial design are increasingly used for left ventricular assist support. The efficacy of this design compared with pulsatile, volume displacement pumps, with respect to characteristics of left ventricular unloading, and exercise performance remains largely unstudied. Methods and Results— Thirty-four patients undergoing implantation with a pulsatile, volume displacement pump operating in a full-to-empty cycle (HeartMate XVE; Thoratec Inc, Pleasanton, Calif; n=16) or continuous-flow rotary pump with an axial design operating at a fixed rotor speed (HeartMate II; Thoratec Inc; n=18) were evaluated with right heart catheterization and echocardiography preoperatively and at 3 months postoperatively and cardiopulmonary exercise testing 3 months postoperatively. Support with either the XVE or II resulted in significant ( P 2 −XVE: 46.8±10.2 versus II: 49.1±13.6). Echocardiography at 3 months demonstrated a significantly ( P Conclusions— The HeartMate XVE or II provided equivalent degrees of hemodynamic support and exercise capacity. The XVE was associated with greater left ventricular volume unloading. Characteristics of left ventricular pressure and volume unloading between these pump designs and mode of operation do not influence early exercise performance.

162 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This Review focuses on the recent advances in the understanding of the regulation, mechanism of action and functions of NFAT proteins in T cells.
Abstract: Since the discovery of the first nuclear factor of activated T cells (NFAT) protein more than a decade ago, the NFAT family of transcription factors has grown to include five members. It has also become clear that NFAT proteins have crucial roles in the development and function of the immune system. In T cells, NFAT proteins not only regulate activation but also are involved in the control of thymocyte development, T-cell differentiation and self-tolerance. The functional versatility of NFAT proteins can be explained by their complex mechanism of regulation and their ability to integrate calcium signalling with other signalling pathways. This Review focuses on the recent advances in our understanding of the regulation, mechanism of action and functions of NFAT proteins in T cells.

1,398 citations

Journal ArticleDOI
TL;DR: Institutional Affiliations Co-chairs Feldman D: Minneapolis Heart Institute, Minneapolis, Minnesota, Georgia Institute of Technology and Morehouse School of Medicine, and Pamboukian SV: University of Alabama at Birmingham, Birmingham, Alabama, Teuteberg JJ:University of Pittsburgh, Pittsburgh, Pennsylvania Task force chairs.
Abstract: Institutional Affiliations Co-chairs Feldman D: Minneapolis Heart Institute, Minneapolis, Minnesota, Georgia Institute of Technology and Morehouse School of Medicine; Pamboukian SV: University of Alabama at Birmingham, Birmingham, Alabama; Teuteberg JJ: University of Pittsburgh, Pittsburgh, Pennsylvania Task force chairs Birks E: University of Louisville, Louisville, Kentucky; Lietz K: Loyola University, Chicago, Maywood, Illinois; Moore SA: Massachusetts General Hospital, Boston, Massachusetts; Morgan JA: Henry Ford Hospital, Detroit, Michigan Contributing writers Arabia F: Mayo Clinic Arizona, Phoenix, Arizona; Bauman ME: University of Alberta, Alberta, Canada; Buchholz HW: University of Alberta, Stollery Children’s Hospital and Mazankowski Alberta Heart Institute, Edmonton, Alberta, Canada; Deng M: University of California at Los Angeles, Los Angeles, California; Dickstein ML: Columbia University, New York, New York; El-Banayosy A: Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania; Elliot T: Inova Fairfax, Falls Church, Virginia; Goldstein DJ: Montefiore Medical Center, New York, New York; Grady KL: Northwestern University, Chicago, Illinois; Jones K: Alfred Hospital, Melbourne, Australia; Hryniewicz K: Minneapolis Heart Institute, Minneapolis, Minnesota; John R: University of Minnesota, Minneapolis, Minnesota; Kaan A: St. Paul’s Hospital, Vancouver, British Columbia, Canada; Kusne S: Mayo Clinic Arizona, Phoenix, Arizona; Loebe M: Methodist Hospital, Houston, Texas; Massicotte P: University of Alberta, Stollery Children’s Hospital, Edmonton, Alberta, Canada; Moazami N: Minneapolis Heart Institute, Minneapolis, Minnesota; Mohacsi P: University Hospital, Bern, Switzerland; Mooney M: Sentara Norfolk, Virginia Beach, Virginia; Nelson T: Mayo Clinic Arizona, Phoenix, Arizona; Pagani F: University of Michigan, Ann Arbor, Michigan; Perry W: Integris Baptist Health Care, Oklahoma City, Oklahoma; Potapov EV: Deutsches Herzzentrum Berlin, Berlin, Germany; Rame JE: University of Pennsylvania, Philadelphia, Pennsylvania; Russell SD: Johns Hopkins, Baltimore, Maryland; Sorensen EN: University of Maryland, Baltimore, Maryland; Sun B: Minneapolis Heart Institute, Minneapolis, Minnesota; Strueber M: Hannover Medical School, Hanover, Germany Independent reviewers Mangi AA: Yale University School of Medicine, New Haven, Connecticut; Petty MG: University of Minnesota Medical Center, Fairview, Minneapolis, Minnesota; Rogers J: Duke University Medical Center, Durham, North Carolina

1,152 citations

Journal ArticleDOI
TL;DR: Key elements in managing patients supported with the new continuous-flow LVADs are proposed, including implants techniques, troubleshooting device problems, and algorithms for outpatient management, including the diagnosis and treatment of related problems associated with the HeartMate II.
Abstract: Continuous-flow left ventricular assist devices (LVAD) have emerged as the standard of care for advanced heart failure patients requiring long-term mechanical circulatory support. Evidence-based clinical management of LVAD-supported patients is becoming increasingly important for optimizing outcomes. In this state-of-art review, we propose key elements in managing patients supported with the new continuous-flow LVADs. Although most of the presented information is largely based on investigator experience during the 1,300-patient HeartMate II clinical trial, many of the discussed principles can be applied to other emerging devices as well. Patient selection, pre-operative preparation, and the timing of LVAD implant are some of the most important elements critical to successful circulatory support and are principles universal to all devices. In addition, proper nutrition management and avoidance of infectious complications can significantly affect morbidity and mortality during LVAD support. Optimizing intraoperative and peri-operative care, and the monitoring and treatment of other organ system dysfunction as it relates to LVAD support, are discussed. A multidisciplinary heart failure team must be organized and charged with providing comprehensive care from initial referral until support is terminated. Preparing for hospital discharge requires detailed education for the patient and family or friends, with provisions for emergencies and routine care. Implantation techniques, troubleshooting device problems, and algorithms for outpatient management, including the diagnosis and treatment of related problems associated with the HeartMate II, are discussed as an example of a specific continuous-flow LVAD. Ongoing trials with other continuous-flow devices may produce additional information in the future for improving clinical management of patients with these devices.

860 citations