scispace - formally typeset
Search or ask a question
Author

D. B. Spalding

Bio: D. B. Spalding is an academic researcher from Imperial College London. The author has contributed to research in topics: Turbulence & Heat transfer. The author has an hindex of 40, co-authored 100 publications receiving 28895 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present a review of the applicability and applicability of numerical predictions of turbulent flow, and advocate that computational economy, range of applicability, and physical realism are best served by turbulence models in which the magnitudes of two turbulence quantities, the turbulence kinetic energy k and its dissipation rate ϵ, are calculated from transport equations solved simultaneously with those governing the mean flow behaviour.

11,866 citations

Journal ArticleDOI
TL;DR: In this article, a general, numerical, marching procedure is presented for the calculation of the transport processes in three-dimensional flows characterised by the presence of one coordinate in which physical influences are exerted in only one direction.

5,946 citations

Book
01 Jan 1972
TL;DR: In this article, a lecture in mathematical models of turbulence is presented. But it is based on a mathematical model of turbulence, not on a real world scenario, and it is not suitable for discussion.
Abstract: Lectures in mathematical models of turbulence , Lectures in mathematical models of turbulence , مرکز فناوری اطلاعات و اطلاع رسانی کشاورزی

2,498 citations

01 Jan 1972
TL;DR: In this article, turbulence and melange models are used to model models of mathematical models for fluides reference record created on 2005-11-18, modified on 2016-08-08.
Abstract: Keywords: turbulence ; melange ; modeles : mathematiques ; mecanique des : fluides Reference Record created on 2005-11-18, modified on 2016-08-08

2,089 citations

Journal ArticleDOI
TL;DR: In this article, a new technique is described for measuring the axial mass flow rate in the turbulent jet formed when a gas in injected into a reservoir of stagnant air at uniform pressure.
Abstract: A new technique is described for measuring the axial mass flow rate in the turbulent jet formed when a gas in injected into a reservoir of stagnant air at uniform pressure. The jet is surrounded by a porous-walled cylindrical chamber, and air is injected through the wall until the pressure in the chamber is uniform and atmospheric, a condition which is taken to signify that the ‘entrainment appetite’ of the jet is satisfied.Measurements made with the apparatus have allowed the deduction of an entrainment law relating mass flow rate, jet momentum, axial distance and air density, regardless of the injected gas, and including the effects of buoyancy. When the injected gas burns in the jet the entrainment rate is up to 30% lower than when it does not.

1,093 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present a review of the applicability and applicability of numerical predictions of turbulent flow, and advocate that computational economy, range of applicability, and physical realism are best served by turbulence models in which the magnitudes of two turbulence quantities, the turbulence kinetic energy k and its dissipation rate ϵ, are calculated from transport equations solved simultaneously with those governing the mean flow behaviour.

11,866 citations

Journal ArticleDOI
TL;DR: In this article, a general, numerical, marching procedure is presented for the calculation of the transport processes in three-dimensional flows characterised by the presence of one coordinate in which physical influences are exerted in only one direction.

5,946 citations

Journal Article
01 Jun 1978
TL;DR: In this paper, the authors evaluated the applicability of the standard κ-ϵ equations and other turbulence models with respect to their applicability in swirling, recirculating flows.
Abstract: The standard κ-ϵ equations and other turbulence models are evaluated with respect to their applicability in swirling, recirculating flows. The turbulence models are formulated on the basis of two separate viewpoints. The first perspective assumes that an isotropic eddy viscosity and the modified Boussinesq hypothesis adequately describe the stress distributions, and that the source of predictive error is a consequence of the modeled terms in the κ-ϵ equations. Both stabilizing and destabilizing Richardson number corrections are incorporated to investigate this line of reasoning. A second viewpoint proposes that the eddy viscosity approach is inherently inadequate and that a redistribution of the stress magnitudes is necessary. Investigation of higher-order closure is pursued on the level of an algebraic stress closure. Various turbulence model predictions are compared with experimental data from a variety of isothermal, confined studies. Supportive swirl comparisons are also performed for a laminar flow case, as well as reacting flow cases. Parallel predictions or contributions from other sources are also consulted where appropriate. Predictive accuracy was found to be a partial function of inlet boundary conditions and numerical diffusion. Despite prediction sensitivity to inlet conditions and numerics, the data comparisons delineate the relative advantages and disadvantages of the various modifications. Possible research avenues in the area of computational modeling of strongly swirling, recirculating flows are reviewed and discussed.

5,396 citations

Journal ArticleDOI
TL;DR: In this article, a new k -ϵ eddy viscosity model, which consists of a new model dissipation rate equation and a new realizable eddy viscous formulation, is proposed.

4,648 citations

Journal ArticleDOI
TL;DR: In this paper, a methode numerique par volume fini pour the resolution des equations de Navier-Stokes bidimensionnelles, incompressible, and stationnaires, en coordonnees generales curvilignes, is presented.
Abstract: Presentation d'une methode numerique par volume fini pour la resolution des equations de Navier-Stokes bidimensionnelles, incompressibles, et stationnaires, en coordonnees generales curvilignes Application de la methode aux ecoulements turbulents sur des profils avec et sans separation au bord de sortie posterieur Comparaison des calculs avec des donnees experimentales

4,356 citations