scispace - formally typeset
Search or ask a question
Author

D. Bohm

Bio: D. Bohm is an academic researcher from Princeton University. The author has contributed to research in topics: Interpretation (model theory) & Plasma oscillation. The author has an hindex of 16, co-authored 19 publications receiving 12037 citations. Previous affiliations of D. Bohm include University of São Paulo & University of Bristol.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, it was shown that there exist effects of potentials on charged particles, even in the region where all the fields (and therefore the forces on the particles) vanish.
Abstract: In this paper, we discuss some interesting properties of the electromagnetic potentials in the quantum domain. We shall show that, contrary to the conclusions of classical mechanics, there exist effects of potentials on charged particles, even in the region where all the fields (and therefore the forces on the particles) vanish. We shall then discuss possible experiments to test these conclusions; and, finally, we shall suggest further possible developments in the interpretation of the potentials.

5,553 citations

Journal ArticleDOI

2,167 citations

Journal ArticleDOI
TL;DR: A brief review of the physical significance of the paradox of Einstein, Rosen, and Podolsky is given, and it is shown that it involves a kind of correlation of the properties of distant noninteracting systems, which is quite different from previously known kinds of correlation as discussed by the authors.
Abstract: A brief review of the physical significance of the paradox of Einstein, Rosen, and Podolsky is given, and it is shown that it involves a kind of correlation of the properties of distant noninteracting systems, which is quite different from previously known kinds of correlation. An illustrative hypothesis is considered, which would avoid the paradox, and which would still be consistent with all experimental results that have been analyzed to date. It is shown, however, that there already is an experiment whose significance with regard to this problem has not yet been explicitly brought out, but which is able to prove that this suggested resolution of the paradox (as well as a very wide class of such resolutions) is not tenable. Thus, this experiment may be regarded as the first clear empirical proof that the aspects of the quantum theory discussed by Einstein, Rosen, and Podolsky represent real properties of matter.

565 citations


Cited by
More filters
Journal ArticleDOI
01 Nov 1964-Physics
TL;DR: In this article, it was shown that even without such a separability or locality requirement, no hidden variable interpretation of quantum mechanics is possible and that such an interpretation has a grossly nonlocal structure, which is characteristic of any such theory which reproduces exactly the quantum mechanical predictions.
Abstract: THE paradox of Einstein, Podolsky and Rosen [1] was advanced as an argument that quantum mechanics could not be a complete theory but should be supplemented by additional variables These additional variables were to restore to the theory causality and locality [2] In this note that idea will be formulated mathematically and shown to be incompatible with the statistical predictions of quantum mechanics It is the requirement of locality, or more precisely that the result of a measurement on one system be unaffected by operations on a distant system with which it has interacted in the past, that creates the essential difficulty There have been attempts [3] to show that even without such a separability or locality requirement no "hidden variable" interpretation of quantum mechanics is possible These attempts have been examined elsewhere [4] and found wanting Moreover, a hidden variable interpretation of elementary quantum theory [5] has been explicitly constructed That particular interpretation has indeed a grossly nonlocal structure This is characteristic, according to the result to be proved here, of any such theory which reproduces exactly the quantum mechanical predictions

10,253 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that the Aharonov-Bohm effect can be interpreted as a geometrical phase factor and a general formula for γ(C) was derived in terms of the spectrum and eigen states of the Hamiltonian over a surface spanning C.
Abstract: A quantal system in an eigenstate, slowly transported round a circuit C by varying parameters R in its Hamiltonian Ĥ(R), will acquire a geometrical phase factor exp{iγ(C)} in addition to the familiar dynamical phase factor. An explicit general formula for γ(C) is derived in terms of the spectrum and eigenstates of Ĥ(R) over a surface spanning C. If C lies near a degeneracy of Ĥ, γ(C) takes a simple form which includes as a special case the sign change of eigenfunctions of real symmetric matrices round a degeneracy. As an illustration γ(C) is calculated for spinning particles in slowly-changing magnetic fields; although the sign reversal of spinors on rotation is a special case, the effect is predicted to occur for bosons as well as fermions, and a method for observing it is proposed. It is shown that the Aharonov-Bohm effect can be interpreted as a geometrical phase factor.

7,425 citations

Journal ArticleDOI
TL;DR: In this paper, a theorem of Bell, proving that certain predictions of quantum mechanics are inconsistent with the entire family of local hidden-variable theories, is generalized so as to apply to realizable experiments.
Abstract: A theorem of Bell, proving that certain predictions of quantum mechanics are inconsistent with the entire family of local hidden-variable theories, is generalized so as to apply to realizable experiments. A proposed extension of the experiment of Kocher and Commins, on the polarization correlation of a pair of optical photons, will provide a decisive test between quantum mechanics and local hidden-variable theories.

6,887 citations

MonographDOI
01 Dec 2014
TL;DR: This chapter discusses the emergence of learning activity as a historical form of human learning and the zone of proximal development as the basic category of expansive research.
Abstract: 1. Introduction 2. The emergence of learning activity as a historical form of human learning 3. The zone of proximal development as the basic category of expansive research 4. The instruments of expansion 5. Toward an expansive methodology 6. Epilogue.

5,768 citations

Journal ArticleDOI
TL;DR: It is found that even a weak magnetoelectric interaction can lead to spectacular cross-coupling effects when it induces electric polarization in a magnetically ordered state.
Abstract: Magnetism and ferroelectricity are essential to many forms of current technology, and the quest for multiferroic materials, where these two phenomena are intimately coupled, is of great technological and fundamental importance. Ferroelectricity and magnetism tend to be mutually exclusive and interact weakly with each other when they coexist. The exciting new development is the discovery that even a weak magnetoelectric interaction can lead to spectacular cross-coupling effects when it induces electric polarization in a magnetically ordered state. Such magnetic ferroelectricity, showing an unprecedented sensitivity to ap plied magnetic fields, occurs in 'frustrated magnets' with competing interactions between spins and complex magnetic orders. We summarize key experimental findings and the current theoretical understanding of these phenomena, which have great potential for tuneable multifunctional devices.

3,683 citations