scispace - formally typeset
Search or ask a question
Author

D.D.L. Chung

Bio: D.D.L. Chung is an academic researcher from State University of New York System. The author has contributed to research in topics: Fiber & Graphite. The author has an hindex of 81, co-authored 707 publications receiving 25862 citations. Previous affiliations of D.D.L. Chung include University of Pittsburgh & Massachusetts Institute of Technology.


Papers
More filters
Journal ArticleDOI
01 Feb 2001-Carbon
TL;DR: Carbon materials for electromagnetic interference (EMI) shielding are reviewed in this article, including composite materials, colloidal graphite and flexible graphite, and they include carbon filaments of submicron diameter.

1,676 citations

Journal ArticleDOI
TL;DR: In this article, materials for the electromagnetic interference (EMI) shielding of electronics and radiation sources are reviewed, with emphasis on composite materials and resilient EMI gasket materials, which shield mainly by reflection of the radiation at a high frequency.
Abstract: Materials for the electromagnetic interference (EMI) shielding of electronics and radiation sources are reviewed, with emphasis on composite materials and resilient EMI gasket materials, which shield mainly by reflection of the radiation at a high frequency.

605 citations

Journal ArticleDOI
01 Aug 2012-Carbon
TL;DR: In this article, a review of carbon materials for significant emerging applications that relate to structural self-sensing (a structural material sensing its own condition), electromagnetic interference shielding (blocking radio wave) and thermal interfacing (improving thermal contacts by using thermal interface materials).

513 citations

Journal ArticleDOI
TL;DR: In this article, the authors used aluminum nitride whiskers (and/or particles) and/or silicon carbide whiskers as fillers(s) and polyvinylidene fluoride (PVDF) or epoxy as matrix.
Abstract: Thermally conducting, but electrically insulating, polymer-matrix composites that exhibit low values of the dielectric constant and the coefficient of thermal expansion (CTE) are needed for electronic packaging. For developing such composites, this work used aluminum nitride whiskers (and/or particles) and/or silicon carbide whiskers as fillers(s) and polyvinylidene fluoride (PVDF) or epoxy as matrix. The highest thermal conductivity of 11.5 W/(m K) was attained by using PVDF, AlN whiskers and AlN particles (7 μm), such that the total filler volume fraction was 60% and the AlN whisker–particle ratio was 1:25.7. When AlN particles were used as the sole filler, the thermal conductivity was highest for the largest AlN particle size (115 μm), but the porosity increased with increasing AlN particle size. The thermal conductivity of AlN particle epoxy-matrix composite was increased by up to 97% by silane surface treatment of the particles prior to composite fabrication. The increase in thermal conductivity is due to decrease in the filler–matrix thermal contact resistance through the improvement of the interface between matrix and particles. At 60 vol.% silane-treated AlN particles only, the thermal conductivity of epoxy-matrix composite reached 11.0 W/(m K). The dielectric constant was quite high (up to 10 at 2 MHz) for the PVDF composites. The change of the filler from AlN to SiC greatly increased the dielectric constant. Combined use of whiskers and particles in an appropriate ratio gave composites with higher thermal conductivity and low CTE than the use of whiskers alone or particles alone. However, AlN addition caused the tensile strength, modulus and ductility to decrease from the values of the neat polymer, and caused degradation after water immersion.

502 citations

Book ChapterDOI
TL;DR: When a graphite intercalation compound is heated past a critical temperature, a large expansion along the c-direction occurs, giving the compound a puffed-up appearance as discussed by the authors.
Abstract: When a graphite intercalation compound [1] is heated past a critical temperature, a large expansion along the c-direction occurs, giving the compound a puffed-up appearance. This phenomenom is known as exfoliation. Ubbelohde [2] observed that graphite-Br2 exfoliated at 350°C from 3 mm to approximately 35 mm. Exfoliation has also been observed in graphite-FeC13 [3], graphite-A1C13 [4], and graphite intercalated with a mixture of HNO3 and H2SO4 [4]. The exfoliation of graphite-FeC13 has been used to manufacture Grafoil [5]; the exfoliation of graphite-(HNO3+H2SO) has been used for making a thermal insulator for molten metals [6]. In spite of the numerous practical applications of exfoliation, relatively little work has been done to understand and characterize this unusual phenomenon.

421 citations


Cited by
More filters
Journal ArticleDOI
01 Jun 2007-Carbon
TL;DR: In this paper, a colloidal suspension of exfoliated graphene oxide sheets in water with hydrazine hydrate results in their aggregation and subsequent formation of a high surface area carbon material which consists of thin graphene-based sheets.

12,756 citations

Journal ArticleDOI
20 Jul 2006-Nature
TL;DR: The bottom-up chemical approach of tuning the graphene sheet properties provides a path to a broad new class of graphene-based materials and their use in a variety of applications.
Abstract: The remarkable mechanical properties of carbon nanotubes arise from the exceptional strength and stiffness of the atomically thin carbon sheets (graphene) from which they are formed. In contrast, bulk graphite, a polycrystalline material, has low fracture strength and tends to suffer failure either by delamination of graphene sheets or at grain boundaries between the crystals. Now Stankovich et al. have produced an inexpensive polymer-matrix composite by separating graphene sheets from graphite and chemically tuning them. The material contains dispersed graphene sheets and offers access to a broad range of useful thermal, electrical and mechanical properties. Individual sheets of graphene can be readily incorporated into a polymer matrix, giving rise to composite materials having potentially useful electronic properties. Graphene sheets—one-atom-thick two-dimensional layers of sp2-bonded carbon—are predicted to have a range of unusual properties. Their thermal conductivity and mechanical stiffness may rival the remarkable in-plane values for graphite (∼3,000 W m-1 K-1 and 1,060 GPa, respectively); their fracture strength should be comparable to that of carbon nanotubes for similar types of defects1,2,3; and recent studies have shown that individual graphene sheets have extraordinary electronic transport properties4,5,6,7,8. One possible route to harnessing these properties for applications would be to incorporate graphene sheets in a composite material. The manufacturing of such composites requires not only that graphene sheets be produced on a sufficient scale but that they also be incorporated, and homogeneously distributed, into various matrices. Graphite, inexpensive and available in large quantity, unfortunately does not readily exfoliate to yield individual graphene sheets. Here we present a general approach for the preparation of graphene-polymer composites via complete exfoliation of graphite9 and molecular-level dispersion of individual, chemically modified graphene sheets within polymer hosts. A polystyrene–graphene composite formed by this route exhibits a percolation threshold10 of ∼0.1 volume per cent for room-temperature electrical conductivity, the lowest reported value for any carbon-based composite except for those involving carbon nanotubes11; at only 1 volume per cent, this composite has a conductivity of ∼0.1 S m-1, sufficient for many electrical applications12. Our bottom-up chemical approach of tuning the graphene sheet properties provides a path to a broad new class of graphene-based materials and their use in a variety of applications.

11,866 citations

Journal ArticleDOI
02 Aug 2002-Science
TL;DR: Many potential applications have been proposed for carbon nanotubes, including conductive and high-strength composites; energy storage and energy conversion devices; sensors; field emission displays and radiation sources; hydrogen storage media; and nanometer-sized semiconductor devices, probes, and interconnects.
Abstract: Many potential applications have been proposed for carbon nanotubes, including conductive and high-strength composites; energy storage and energy conversion devices; sensors; field emission displays and radiation sources; hydrogen storage media; and nanometer-sized semiconductor devices, probes, and interconnects. Some of these applications are now realized in products. Others are demonstrated in early to advanced devices, and one, hydrogen storage, is clouded by controversy. Nanotube cost, polydispersity in nanotube type, and limitations in processing and assembly methods are important barriers for some applications of single-walled nanotubes.

9,693 citations