scispace - formally typeset
Search or ask a question
Author

D. Dudzinski

Bio: D. Dudzinski is an academic researcher from University of Lorraine. The author has contributed to research in topics: Machining & Chip formation. The author has an hindex of 23, co-authored 43 publications receiving 2506 citations. Previous affiliations of D. Dudzinski include Metz & Arts et Métiers ParisTech.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors focused on Inconel 718 and recent work and advances concerning machining of this material are presented, and some solutions to reduce the use of coolants are explored, and different coating techniques to enable a move towards dry machining are examined.
Abstract: The increasing attention to the environmental and health impacts of industry activities by governmental regulation and by the growing awareness in society is forcing manufacturers to reduce the use of lubricants. In the machining of aeronautical materials, classified as difficult-to-machine materials, the consumption of cooling lubricant during the machining operations is very important. The associated costs of coolant acquisition, use, disposal and washing the machined components are significant, up to four times the cost of consumable tooling used in the cutting operations. To reduce the costs of production and to make the processes environmentally safe, the goal of the aeronautical manufacturers is to move toward dry cutting by eliminating or minimising cutting fluids. This goal can be achieved by a clear understanding of the cutting fluid function in machining operations, in particular in high speed cutting, and by the development and the use of new materials for tools and coatings. High speed cutting is another important aspect of advanced manufacturing technology introduced to achieve high productivity and to save machining cost. The combination of high speed cutting and dry cutting for difficult-to-cut aerospace materials is the growing challenge to deal with the economic, environmental and health aspects of machining. In this paper, attention is focussed on Inconel 718 and recent work and advances concerning machining of this material are presented. In addition, some solutions to reduce the use of coolants are explored, and different coating techniques to enable a move towards dry machining are examined.

598 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of dry machining on surface integrity and residual stresses when machining Inconel 718 superalloy was reviewed and an optimal cutting speed of 60m/min was determined, and additional measurements and observations were performed.

324 citations

Journal ArticleDOI
15 Mar 2007-Wear
TL;DR: In this article, different carbide tools and different cutting conditions were tested in dry conditions, the elementary orthogonal cutting process was chosen, the cutting and feed cutting forces components were measured and the cutting force ratio calculated.

324 citations

Journal ArticleDOI
TL;DR: In this article, a thermomechanical model of the primary shear zone is combined with a modelling of the contact problem at the tool-chip interface, and a friction law is introduced that accounts for temperature effects.
Abstract: In this paper the process of orthogonal cutting is studied by analytical means. A thermomechanical model of the primary shear zone is combined with a modelling of the contact problem at the tool-chip interface. A friction law is introduced that accounts for temperature effects. The effects of cutting conditions and material behaviour on the temperature distribution along the contact zone, on the mean friction and on the global cutting forces are evaluated. The experimental trends are shown to be well described by the proposed model. © 1998 Elsevier Science Ltd. All rights reserved.Keywords : A. cutting and forming, thermomechanical processes, B. viscoplastic material, friction.

198 citations

Journal ArticleDOI
TL;DR: In this paper, an analytical approach is used to model oblique cutting process and material characteristics such as strain rate sensitivity, strain hardening and thermal softening are considered by using a one-dimensional approach.
Abstract: An analytical approach is used to model oblique cutting process. The material characteristics such as strain rate sensitivity, strain hardening and thermal softening are considered. The chip formation is supposed to occur mainly by shearing within a thin band called primary shear zone. The analysis is limited to stationary flow and the material flow within the primary shear zone is modelled by using a one-dimensional approach. Thermomechanical coupling and inertia effects are accounted for. The chip flow angle is determined by the assumption that the friction force on the tool face is collinear to the chip flow direction. At the chip–tool interface, the friction condition can be affected by the important heating induced by the large values of pressure and sliding velocity. In spite of the complexity of phenomena governing the friction law in machining, a reasonable assumption is to consider that the mean friction coefficient is primarily function of the average temperature at the tool–chip interface. Comparisons between model predictions and experimental results are performed for different values of cutting speed, undeformed chip thickness, normal cutting angle and inclination angle. A critical study is presented in order to show the influences of the input parameters of the model including the normal shear angle, the thickness of the primary shear zone and the pressure distribution at the tool–chip interface. The model permits to predict the cutting forces, the chip flow direction, the contact length between the chip and the tool and the temperature distribution at the tool–chip interface which has an important effect on tool wear.

126 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors provide an overview of machining induced surface integrity in titanium and nickel alloys and conclude that further modeling studies are needed to create predictive physics-based models that is in good agreement with reliable experiments.
Abstract: Titanium and nickel alloys represent a significant metal portion of the aircraft structural and engine components. When these critical structural components in aerospace industry are manufactured with the objective to reach high reliability levels, surface integrity is one of the most relevant parameters used for evaluating the quality of finish machined surfaces. The residual stresses and surface alteration (white etch layer and depth of work hardening) induced by machining of titanium alloys and nickel-based alloys are very critical due to safety and sustainability concerns. This review paper provides an overview of machining induced surface integrity in titanium and nickel alloys. There are many different types of surface integrity problems reported in literature, and among these, residual stresses, white layer and work hardening layers, as well as microstructural alterations can be studied in order to improve surface qualities of end products. Many parameters affect the surface quality of workpieces, and cutting speed, feed rate, depth of cut, tool geometry and preparation, tool wear, and workpiece properties are among the most important ones worth to investigate. Experimental and empirical studies as well as analytical and Finite Element modeling based approaches are offered in order to better understand machining induced surface integrity. In the current state-of-the-art however, a comprehensive and systematic modeling approach based on the process physics and applicable to the industrial processes is still missing. It is concluded that further modeling studies are needed to create predictive physics-based models that is in good agreement with reliable experiments, while explaining the effects of many parameters, for machining of titanium alloys and nickel-based alloys.

986 citations

Journal ArticleDOI
TL;DR: A review of the state of research on the chatter problem and classifications the existing methods developed to ensure stable cutting into those that use the lobbing effect, out-of-process or in-process, and those that, passively or actively, modify the system behavior as mentioned in this paper.
Abstract: Chatter is a self-excited vibration that can occur during machining operations and become a common limitation to productivity and part quality. For this reason, it has been a topic of industrial and academic interest in the manufacturing sector for many years. A great deal of research has been carried out since the late 1950s to solve the chatter problem. Researchers have studied how to detect, identify, avoid, prevent, reduce, control, or suppress chatter. This paper reviews the state of research on the chatter problem and classifies the existing methods developed to ensure stable cutting into those that use the lobbing effect, out-of-process or in-process, and those that, passively or actively, modify the system behaviour.

790 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review and identify the materials known as difficult-to-machine and their properties and major health and environmental concerns about their usage in material cutting industries are defined.
Abstract: Machining difficult-to-machine materials such as alloys used in aerospace, nuclear and medical industries are usually accompanied with low productivity, poor surface quality and short tool life. Despite the broad use of the term difficult-to-machine or hard-to-cut materials, the area of these types of materials and their properties are not clear yet. On the other hand, using cutting fluids is a common technique for improving machinability and has been acknowledged since early 20th. However, the environmental and health hazards associated with the use of conventional cutting fluids together with developing governmental regulations have resulted in increasing machining costs. The aim of this paper is to review and identify the materials known as difficult-to-machine and their properties. In addition, different cutting fluids are reviewed and major health and environmental concerns about their usage in material cutting industries are defined. Finally, advances in reducing and/or eliminating the use of conventional cutting fluids are reviewed and discussed.

658 citations

Journal ArticleDOI
TL;DR: In this article, the state-of-the-art in predictive performance models for machining operations is presented, and a critical assessment of the relevant modelling techniques and their applicability and/or limitations for the prediction of the complex machining operation performed in industry.

622 citations

Journal ArticleDOI
TL;DR: In this article, a review of green machining including the cutting fluid type as well as the methods to apply the cutting fluids in machining process is made regarding an attempt was made regarding of green manufacturing including cutting fluid types and its machining conditions are critically important in order to maximize the efficiency of cutting fluids.

555 citations