scispace - formally typeset
Search or ask a question
Author

D. E. Shumaker

Bio: D. E. Shumaker is an academic researcher from Lawrence Livermore National Laboratory. The author has contributed to research in topics: Tokamak & Turbulence. The author has an hindex of 6, co-authored 9 publications receiving 1116 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors compared the performance of gyrokinetic and gyrofluid simulations of ion-temperature gradient (ITG)instability and turbulence in tokamak plasmas as well as some tokak plasma thermal transportmodels.
Abstract: The predictions of gyrokinetic and gyrofluid simulations of ion-temperature-gradient(ITG)instability and turbulence in tokamak plasmas as well as some tokamak plasma thermal transportmodels, which have been widely used for predicting the performance of the proposed International Thermonuclear Experimental Reactor (ITER) tokamak [Plasma Physics and Controlled Nuclear Fusion Research, 1996 (International Atomic Energy Agency, Vienna, 1997), Vol. 1, p. 3], are compared. These comparisons provide information on effects of differences in the physics content of the various models and on the fusion-relevant figures of merit of plasma performance predicted by the models. Many of the comparisons are undertaken for a simplified plasma model and geometry which is an idealization of the plasma conditions and geometry in a Doublet III-D [Plasma Physics and Controlled Nuclear Fusion Research, 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. 1, p. 159] high confinement (H-mode) experiment. Most of the models show good agreements in their predictions and assumptions for the linear growth rates and frequencies. There are some differences associated with different equilibria. However, there are significant differences in the transport levels between the models. The causes of some of the differences are examined in some detail, with particular attention to numerical convergence in the turbulence simulations (with respect to simulation mesh size, system size and, for particle-based simulations, the particle number). The implications for predictions of fusion plasma performance are also discussed.

953 citations

Journal ArticleDOI
TL;DR: In this paper, the results of the global particle-in-cell (PIC) code were reproduced using the flux-tube PIC code PG3EQ, and it was shown that the late-time decay of ETG turbulence and the steady-state heat transport observed in these PIC simulations results from discrete particle noise.
Abstract: Recent gyrokinetic simulations of electron temperature gradient (ETG) turbulence with flux-tube continuum codes vs. the global particle-in-cell (PIC) code GTC yielded different results despite similar plasma parameters. Differences between the simulations results were attributed to insufficient phase-space resolution and novel physics associated with toroidicity and/or global simulations. We have reproduced the results of the global PIC code using the flux-tube PIC code PG3EQ, thereby eliminating global effects as the cause of the discrepancy. We show that the late-time decay of ETG turbulence and the steady-state heat transport observed in these PIC simulations results from discrete particle noise. Discrete particle noise is a numerical artifact, so both these PG3EQ simulations and the previous GTC simulations have nothing to say about steady-state ETG turbulence and the associated anomalous heat transport. In the course of this work we develop three diagnostics which can help to determine if a particular PIC simulation has become dominated by discrete particle noise.

92 citations

Journal ArticleDOI
TL;DR: In this paper, a new electromagnetic kinetic electron simulation model that uses a generalized split-weight scheme, where the adiabatic part is adjustable, along with a parallel canonical momentum formulation has been developed in three-dimensional toroidal flux-tube geometry.
Abstract: A new electromagnetic kinetic electron simulation model that uses a generalized split-weight scheme, where the adiabatic part is adjustable, along with a parallel canonical momentum formulation has been developed in three-dimensional toroidal flux-tube geometry. This model includes electron–ion collisional effects and has been linearly benchmarked. It is found that for H-mode parameters, the nonadiabatic effects of kinetic electrons increase linear growth rates of the ion-temperature-gradient-driven (ITG) modes, mainly due to trapped-electron drive. The ion heat transport is also increased from that obtained with adiabatic electrons. The linear behaviour of the zonal flow is not significantly affected by kinetic electrons. The ion heat transport decreases to below the adiabatic electron level when finite plasma β is included due to finite-β stabilization of the ITG modes. This work is being carried out using the 'Summit Framework'.

45 citations

Journal ArticleDOI
TL;DR: In this article, non-linear gyrokinetic simulations of toroidal ion temperature gradient turbulence and transport are presented, where the ion thermal fluxes have an offset linear dependence on the temperature gradient and are significantly lower than gyrofluid or IFS-PPPL model predictions.
Abstract: Results are presented from non-linear gyrokinetic simulations of toroidal ion temperature gradient turbulence and transport. The ion thermal fluxes are found to have an offset linear dependence on the temperature gradient and are significantly lower than gyrofluid or IFS-PPPL model predictions. A new phenomenon of non-linear effective critical gradients larger than the linear instability threshold gradients is observed and is associated with undamped flux surface averaged shear flows. The non-linear gyrokinetic codes have passed extensive tests, including comparison against independent linear calculations, a series of non-linear convergence tests and a comparison between two independent non-linear gyrokinetic codes. The most realistic simulations to date used actual reconstructed equilibria from experiments and a model for dilution by impurity and beam ions. These simulations highlight the importance of both self-generated and external E × B flow shear as well as the need for still more physics to be included.

44 citations

Journal ArticleDOI
TL;DR: The non-linear 3D toroidal gyrokinetic simulation code PG3EQ is used to study toroidal ion temperature gradient (ITG) driven turbulence -a key cause of the anomalous transport that limits tokamak plasma performance as mentioned in this paper.
Abstract: The non-linear 3-D toroidal gyrokinetic simulation code PG3EQ is used to study toroidal ion temperature gradient (ITG) driven turbulence - a key cause of the anomalous transport that limits tokamak plasma performance. Surveys of ?i versus E ? B and toroidal shear show that (a)?the maximum growth rate is not a good predictor of the E ? B shear required to suppress turbulent transport, (b)?there is often a `plateau region' in which E ? B shear significantly reduces the maximum linear growth rate but not the transport and (c)?the parallel velocity shear component of toroidal velocity shear can negate much of the transport reduction by the E ? B shear. Simulations in which the ion temperature gradient Ti(r) initially varies with radial position evolve towards a state without strong radial variations in Ti(r) while approximately preserving the total (E ? B + diamagnetic) ion flow. If the electrostatic potential is initialized to zero, then sheared E ? B flows result which can significantly reduce or quench the transport. If, however, the total ion flow profile (or equivalently the radial force) is initialized to be radially uniform, then the initial radial variations in Ti(r) do not result in a significant reduction in the transport. Surveys of ?i versus magnetic shear S show a (often very sharp) peak at S 0.5 - the value at which the orientation of the ITG modes is in the major radius direction and is independent of poloidal angle in the region near the outer midplane. Surveys of ?i versus Ti show that in most cases the thermal flux Q (?i Ti) has a linear dependence on Ti, with an intercept value of Ti which is often significantly larger than than linear critical value.

39 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A comprehensive review of zonal flow phenomena in plasmas is presented in this article, where the focus is on zonal flows generated by drift waves and the back-interaction of ZF on the drift waves, and various feedback loops by which the system regulates and organizes itself.
Abstract: A comprehensive review of zonal flow phenomena in plasmas is presented. While the emphasis is on zonal flows in laboratory plasmas, planetary zonal flows are discussed as well. The review presents the status of theory, numerical simulation and experiments relevant to zonal flows. The emphasis is on developing an integrated understanding of the dynamics of drift wave–zonal flow turbulence by combining detailed studies of the generation of zonal flows by drift waves, the back-interaction of zonal flows on the drift waves, and the various feedback loops by which the system regulates and organizes itself. The implications of zonal flow phenomena for confinement in, and the phenomena of fusion devices are discussed. Special attention is given to the comparison of experiment with theory and to identifying directions for progress in future research.

1,739 citations

Journal ArticleDOI
TL;DR: The nonlinear gyrokinetic equations play a fundamental role in our understanding of the long-time behavior of strongly magnetized plasmas as mentioned in this paper, and they have been used to describe the turbulent evolution of low-frequency electromagnetic fluctuations in a nonuniform magnetization with arbitrary magnetic geometry.
Abstract: Nonlinear gyrokinetic equations play a fundamental role in our understanding of the long-time behavior of strongly magnetized plasmas. The foundations of modern nonlinear gyrokinetic the- ory are based on three important pillars: (1) a gyrokinetic Vlasov equation written in terms of a gyrocenter Hamiltonian with quadratic low-frequency ponderomotive-like terms; (2) a set of gyrokinetic Maxwell (Poisson-Ampere) equations written in terms of the gyrocenter Vlasov dis- tribution that contain low-frequency polarization (Poisson) and magnetization (Ampere) terms derived from the quadratic nonlinearities in the gyrocenter Hamiltonian; and (3) an exact energy conservationlaw for the gyrokineticVlasov-Maxwell equations that includes all the relevant linear and nonlinear coupling terms. The foundations of nonlinear gyrokinetic theory are reviewed with an emphasis on the rigorous applications of Lagrangian and Hamiltonian Lie-transform perturba- tion methods used in the variationalderivationof nonlineargyrokineticVlasov-Maxwell equations. The physical motivations and applications of the nonlinear gyrokinetic equations, which describe the turbulent evolution of low-frequency electromagnetic fluctuations in a nonuniform magnetized plasmas with arbitrary magnetic geometry, are also discussed.

1,010 citations

Journal ArticleDOI
TL;DR: In this article, collisionless electron-temperature-gradient-driven (ETG) turbulence in toroidal geometry is studied via nonlinear numerical simulations via two massively parallel, fully gyrokinetic Vlasov codes.
Abstract: Collisionless electron-temperature-gradient-driven (ETG) turbulence in toroidal geometry is studied via nonlinear numerical simulations To this aim, two massively parallel, fully gyrokinetic Vlasov codes are used, both including electromagnetic effects Somewhat surprisingly, and unlike in the analogous case of ion-temperature-gradient-driven (ITG) turbulence, we find that the turbulent electron heat flux is significantly underpredicted by simple mixing length estimates in a certain parameter regime (ŝ∼1, low α) This observation is directly linked to the presence of radially highly elongated vortices (“streamers”) which lead to very effective cross-field transport The simulations therefore indicate that ETG turbulence is likely to be relevant to magnetic confinement fusion experiments

946 citations

Journal ArticleDOI
TL;DR: The understanding and predictive capability of transport physics and plasma confinement is reviewed from the perspective of achieving reactor-scale burning plasmas in the ITER tokamak, for both core and edge plasma regions.
Abstract: The understanding and predictive capability of transport physics and plasma confinement is reviewed from the perspective of achieving reactor-scale burning plasmas in the ITER tokamak, for both core and edge plasma regions. Very considerable progress has been made in understanding, controlling and predicting tokamak transport across a wide variety of plasma conditions and regimes since the publication of the ITER Physics Basis (IPB) document (1999 Nucl. Fusion 39 2137-2664). Major areas of progress considered here follow. (1) Substantial improvement in the physics content, capability and reliability of transport simulation and modelling codes, leading to much increased theory/experiment interaction as these codes are increasingly used to interpret and predict experiment. (2) Remarkable progress has been made in developing and understanding regimes of improved core confinement. Internal transport barriers and other forms of reduced core transport are now routinely obtained in all the leading tokamak devices worldwide. (3) The importance of controlling the H-mode edge pedestal is now generally recognized. Substantial progress has been made in extending high confinement H-mode operation to the Greenwald density, the demonstration of Type I ELM mitigation and control techniques and systematic explanation of Type I ELM stability. Theory-based predictive capability has also shown progress by integrating the plasma and neutral transport with MHD stability. (4) Transport projections to ITER are now made using three complementary approaches: empirical or global scaling, theory-based transport modelling and dimensionless parameter scaling (previously, empirical scaling was the dominant approach). For the ITER base case or the reference scenario of conventional ELMy H-mode operation, all three techniques predict that ITER will have sufficient confinement to meet its design target of Q = 10 operation, within similar uncertainties.

798 citations

Journal Article
TL;DR: The advantages of nuclear fusion as an energy source and research progress in this area are summarized in this article, where the current state of the art is described, including the Compact Ignition Tokamak (CIT), International Thermonuclear Experimental Reactor (ITER), and a US design called TIBER II.
Abstract: The advantages of nuclear fusion as an energy source and research progress in this area are summarized. The current state of the art is described. Laser fusion, inertial confinement fusion, and magnetic fusion (the tokamak) are explained, the latter in some detail. Remaining problems and planned future reactors are considered. They are the Compact Ignition Tokamak (CIT), the International Thermonuclear Experimental Reactor (ITER), and a US design called TIBER II. The design of the latter is shown. >

596 citations