scispace - formally typeset
Search or ask a question
Author

D.F. Prieto

Bio: D.F. Prieto is an academic researcher from University of Genoa. The author has contributed to research in topics: Change detection & Contextual image classification. The author has an hindex of 4, co-authored 4 publications receiving 1494 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The authors propose two automatic techniques (based on the Bayes theory) for the analysis of the difference image that allow an automatic selection of the decision threshold that minimizes the overall change detection error probability under the assumption that pixels in the difference picture are independent of one another.
Abstract: One of the main problems related to unsupervised change detection methods based on the "difference image" lies in the lack of efficient automatic techniques for discriminating between changed and unchanged pixels in the difference image. Such discrimination is usually performed by using empirical strategies or manual trial-and-error procedures, which affect both the accuracy and the reliability of the change-detection process. To overcome such drawbacks, in this paper, the authors propose two automatic techniques (based on the Bayes theory) for the analysis of the difference image. One allows an automatic selection of the decision threshold that minimizes the overall change detection error probability under the assumption that pixels in the difference image are independent of one another. The other analyzes the difference image by considering the spatial-contextual information included in the neighborhood of each pixel. In particular, an approach based on Markov Random Fields (MRFs) that exploits interpixel class dependency contexts is presented. Both proposed techniques require the knowledge of the statistical distributions of the changed and unchanged pixels in the difference image. To perform an unsupervised estimation of the statistical terms that characterize these distributions, they propose an iterative method based on the Expectation-Maximization (EM) algorithm. Experimental results confirm the effectiveness of both proposed techniques.

1,218 citations

Journal ArticleDOI
TL;DR: A data fusion approach to the classification of multisource and multitemporal remote-sensing images is proposed, based on the application of the Bayes rule for minimum error to the "compound" classification of pairs ofMultisource images acquired at two different dates.
Abstract: A data fusion approach to the classification of multisource and multitemporal remote-sensing images is proposed. The method is based on the application of the Bayes rule for minimum error to the "compound" classification of pairs of multisource images acquired at two different dates. In particular, the fusion of multisource data is obtained by using multilayer perceptron neural networks for a nonparametric estimation of posterior class probabilities. The temporal correlation between images is taken into account by the prior joint probabilities of classes at the two dates. As a novel contribution of this paper, such joint probabilities are automatically estimated by applying a specific formulation of the expectation-maximization (EM) algorithm to the data to be classified. Experiments carried out on a multisource and multitemporal data set confirmed the effectiveness of the proposed approach.

258 citations

Journal ArticleDOI
TL;DR: A supervised technique for training radial basis function (RBF) neural network classifiers considers the class memberships of training samples to select the centers and widths of the kernel functions associated with the hidden neurons of an RBF network, resulting in a significant reduction in the overall classification error.
Abstract: A supervised technique for training radial basis function (RBF) neural network classifiers is proposed. Such a technique, unlike traditional ones, considers the class memberships of training samples to select the centers and widths of the kernel functions associated with the hidden neurons of an RBF network. The result is twofold: a significant reduction in the overall classification error made by the classifier and a more stable behavior of the classification error versus variations in both the number of hidden units and the initial parameters of the training process.

161 citations

Proceedings ArticleDOI
24 Jul 2000
TL;DR: An automatic approach to unsupervised change detection on multisource and multisensor remote sensing images is proposed, which allows the fusion of different information sources in the unsuper supervised change detection process.
Abstract: An automatic approach to unsupervised change detection on multisource and multisensor remote sensing images is proposed. Such an approach, unlike classical ones, allows the fusion of different information sources (e.g. optical data, SAR data) in the unsupervised change detection process. The fusion process is carried out according to a consensus theoretic approach by integrating the estimates of statistical terms achieved on the difference images associated with different sensors. The estimates of the statistical terms of each difference image are carried out by using a novel nonparametric and unsupervised technique.

27 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This paper addresses the problem of the classification of hyperspectral remote sensing images by support vector machines by understanding and assessing the potentialities of SVM classifiers in hyperdimensional feature spaces and concludes that SVMs are a valid and effective alternative to conventional pattern recognition approaches.
Abstract: This paper addresses the problem of the classification of hyperspectral remote sensing images by support vector machines (SVMs) First, we propose a theoretical discussion and experimental analysis aimed at understanding and assessing the potentialities of SVM classifiers in hyperdimensional feature spaces Then, we assess the effectiveness of SVMs with respect to conventional feature-reduction-based approaches and their performances in hypersubspaces of various dimensionalities To sustain such an analysis, the performances of SVMs are compared with those of two other nonparametric classifiers (ie, radial basis function neural networks and the K-nearest neighbor classifier) Finally, we study the potentially critical issue of applying binary SVMs to multiclass problems in hyperspectral data In particular, four different multiclass strategies are analyzed and compared: the one-against-all, the one-against-one, and two hierarchical tree-based strategies Different performance indicators have been used to support our experimental studies in a detailed and accurate way, ie, the classification accuracy, the computational time, the stability to parameter setting, and the complexity of the multiclass architecture The results obtained on a real Airborne Visible/Infrared Imaging Spectroradiometer hyperspectral dataset allow to conclude that, whatever the multiclass strategy adopted, SVMs are a valid and effective alternative to conventional pattern recognition approaches (feature-reduction procedures combined with a classification method) for the classification of hyperspectral remote sensing data

3,607 citations

Journal ArticleDOI
TL;DR: This paper is a comprehensive exploration of all the major change detection approaches implemented as found in the literature and summarizes and reviews these techniques.
Abstract: Timely and accurate change detection of Earth's surface features is extremely important for understanding relationships and interactions between human and natural phenomena in order to promote better decision making. Remote sensing data are primary sources extensively used for change detection in recent decades. Many change detection techniques have been developed. This paper summarizes and reviews these techniques. Previous literature has shown that image differencing, principal component analysis and post-classification comparison are the most common methods used for change detection. In recent years, spectral mixture analysis, artificial neural networks and integration of geographical information system and remote sensing data have become important techniques for change detection applications. Different change detection algorithms have their own merits and no single approach is optimal and applicable to all cases. In practice, different algorithms are often compared to find the best change detection results for a specific application. Research of change detection techniques is still an active topic and new techniques are needed to effectively use the increasingly diverse and complex remotely sensed data available or projected to be soon available from satellite and airborne sensors. This paper is a comprehensive exploration of all the major change detection approaches implemented as found in the literature.

2,785 citations

Journal ArticleDOI
TL;DR: It is suggested that designing a suitable image‐processing procedure is a prerequisite for a successful classification of remotely sensed data into a thematic map and the selection of a suitable classification method is especially significant for improving classification accuracy.
Abstract: Image classification is a complex process that may be affected by many factors. This paper examines current practices, problems, and prospects of image classification. The emphasis is placed on the summarization of major advanced classification approaches and the techniques used for improving classification accuracy. In addition, some important issues affecting classification performance are discussed. This literature review suggests that designing a suitable image-processing procedure is a prerequisite for a successful classification of remotely sensed data into a thematic map. Effective use of multiple features of remotely sensed data and the selection of a suitable classification method are especially significant for improving classification accuracy. Non-parametric classifiers such as neural network, decision tree classifier, and knowledge-based classification have increasingly become important approaches for multisource data classification. Integration of remote sensing, geographical information systems (GIS), and expert system emerges as a new research frontier. More research, however, is needed to identify and reduce uncertainties in the image-processing chain to improve classification accuracy.

2,741 citations

Book
01 Jan 1997
TL;DR: The Nature of Remote Sensing: Introduction, Sensor Characteristics and Spectral Stastistics, and Spatial Transforms: Introduction.
Abstract: The Nature of Remote Sensing: Introduction. Remote Sensing. Information Extraction from Remote-Sensing Images. Spectral Factors in Remote Sensing. Spectral Signatures. Remote-Sensing Systems. Optical Sensors. Temporal Characteristics. Image Display Systems. Data Systems. Summary. Exercises. References. Optical Radiation Models: Introduction. Visible to Short Wave Infrared Region. Solar Radiation. Radiation Components. Surface-Reflected. Unscattered Component. Surface-Reflected. Atmosphere-Scattered Component. Path-Scattered Component. Total At-Sensor. Solar Radiance. Image Examples in the Solar Region. Terrain Shading. Shadowing. Atmospheric Correction. Midwave to Thermal Infrared Region. Thermal Radiation. Radiation Components. Surface-Emitted Component. Surface-Reflected. Atmosphere-Emitted Component. Path-Emitted Component. Total At-Sensor. Emitted Radiance. Total Solar and Thermal Upwelling Radiance. Image Examples in the Thermal Region. Summary. Exercises. References. Sensor Models: Introduction. Overall Sensor Model. Resolution. The Instrument Response. Spatial Resolution. Spectral Resolution. Spectral Response. Spatial Response. Optical PSFopt. Image Motion PSFIM. Detector PSFdet. Electronics PSFel. Net PSFnet. Comparison of Sensor PSFs. PSF Summary for TM. Imaging System Simulation. Amplification. Sampling and Quantization. Simplified Sensor Model. Geometric Distortion. Orbit Models. Platform Attitude Models. Scanner Models. Earth Model. Line and Whiskbroom ScanGeometry. Pushbroom Scan Geometry. Topographic Distortion. Summary. Exercises. References. Data Models: Introduction. A Word on Notation. Univariate Image Statistics. Histogram. Normal Distribution. Cumulative Histogram. Statistical Parameters. Multivariate Image Statistics. Reduction to Univariate Statistics. Noise Models. Statistical Measures of Image Quality. Contrast. Modulation. Signal-to-Noise Ratio (SNR). Noise Equivalent Signal. Spatial Statistics. Visualization of Spatial Covariance. Covariance with Semivariogram. Separability and Anisotropy. Power Spectral Density. Co-occurrence Matrix. Fractal Geometry. Topographic and Sensor Effects. Topography and Spectral Statistics. Sensor Characteristics and Spectral Stastistics. Sensor Characteristics and Spectral Scattergrams. Summary. Exercises. References. Spectral Transforms: Introduction. Feature Space. Multispectral Ratios. Vegetation Indexes. Image Examples. Principal Components. Standardized Principal Components (SPC) Transform. Maximum Noise Fraction (MNF) Transform. Tasseled Cap Tranformation. Contrast Enhancement. Transformations Based on Global Statistics. Linear Transformations. Nonlinear Transformations. Normalization Stretch. Reference Stretch. Thresholding. Adaptive Transformation. Color Image Contrast Enhancement. Min-max Stretch. Normalization Stretch. Decorrelation Stretch. Color Spacer Transformations. Summary. Exercises. References. Spatial Transforms: Introduction. An Image Model for Spatial Filtering. Convolution Filters. Low Pass and High Pass Filters. High Boost Filters. Directional Filters. The Border Region. Characterization of Filtered Images. The Box Filter Algorithm. Cascaded Linear Filters. Statistical Filters. Gradient Filters. Fourier Synthesis. Discrete Fourier Transforms in 2-D. The Fourier Components. Filtering with the Fourier Transform. Transfer Functions. The Power Spectrum. Scale Space Transforms. Image Resolution Pyramids. Zero-Crossing Filters. Laplacian-of-Gaussian (LoG) Filters. Difference-of-Gaussians (DoG) Filters.Wavelet Transforms. Summary. Exercises. References. Correction and Calibration: Introduction. Noise Correction. Global Noise. Sigma Filter. Nagao-Matsuyama Filter. Local Noise. Periodic Noise. Distriping 359. Global,Linear Detector Matching. Nonlinear Detector Matching. Statistical Modification to Linear and Nonlinear Detector. Matching. Spatial Filtering Approaches. Radiometric Calibration. Sensor Calibration. Atmospheric Correction. Solar and Topographic Correction. Image Examples. Calibration and Normalization of Hyperspectral Imagery. AVIRIS Examples. Distortion Correction. Polynomial Distortion Models. Ground Control Points (GCPs). Coordinate Transformation. Map Projections. Resampling. Summary. Exercises References. Registration and Image Fusion: Introduction. What is Registration? Automated GCP Location. Area Correlation. Other Spatial Features. Orthrectification. Low-Resolution DEM. High-Resolution DEM. Hierarchical Warp Stereo. Multi-Image Fusion. Spatial Domain Fusion. High Frequency Modulation. Spectral Domain Fusion. Fusion Image Examples. Summary. Exercises. References. Thematic Classification: Introduction. The Importance of Image Scale. The Notion of Similarity. Hard Versus Soft Classification. Training the Classifier. Supervised Training. Unsupervised Training. K-Means Clustering Algorithm. Clustering Examples. Hybrid Supervised/Unsupervised Training. Non-Parametric Classification Algorithms. Level-Slice. Nearest-Mean. Artificial Neural Networks (ANNs). Back-Propagation Algorithm. Nonparametric Classification Examples. Parametric Classification Algorithms. Estimation of Model-Parameters. Discriminant Functions. The Normal Distribution Model. Relation to the Nearest-Mean Classifier. Supervised Classification Examples and Comparison to Nonparametric Classifiers. Segmentation. Region Growing. Region Labeling. Sub-Pixel Classification. The Linear Mixing Model. Unmixing Model. Hyperspectral Image Analysis. Visualization of the Image Cube. Feature Extraction. Image Residuals. Pre-Classification Processing and Feature Extraction. Classification Algorithms. Exercises. Error Analysis. Multitemporal Images. Summary. References. Index.

2,290 citations

Journal ArticleDOI
TL;DR: This article places data fusion into the greater context of data integration, precisely defines the goals of data fusion, namely, complete, concise, and consistent data, and highlights the challenges of data Fusion.
Abstract: The development of the Internet in recent years has made it possible and useful to access many different information systems anywhere in the world to obtain information. While there is much research on the integration of heterogeneous information systems, most commercial systems stop short of the actual integration of available data. Data fusion is the process of fusing multiple records representing the same real-world object into a single, consistent, and clean representation.This article places data fusion into the greater context of data integration, precisely defines the goals of data fusion, namely, complete, concise, and consistent data, and highlights the challenges of data fusion, namely, uncertain and conflicting data values. We give an overview and classification of different ways of fusing data and present several techniques based on standard and advanced operators of the relational algebra and SQL. Finally, the article features a comprehensive survey of data integration systems from academia and industry, showing if and how data fusion is performed in each.

1,797 citations