scispace - formally typeset
Search or ask a question
Author

D. H. Hartmann

Bio: D. H. Hartmann is an academic researcher from Harvard University. The author has contributed to research in topics: Gamma-ray burst & Galaxy. The author has an hindex of 27, co-authored 106 publications receiving 9083 citations. Previous affiliations of D. H. Hartmann include University of Bonn & CFA Institute.
Topics: Gamma-ray burst, Galaxy, Supernova, Stars, Afterglow


Papers
More filters
Journal ArticleDOI
TL;DR: The final data release of observations of 21 cm emission from Galactic neutral hydrogen over the entire sky, merging the Leiden/Dwingeloo Survey (LDS: Hartmann & Burton 1997, Atlas of Galactic Neutral Hydrogen) with the Instituto Argentino de Radioastronomia Survey (IAR: Arnal et al. 2000, AA and Bajaja et al., 2005, A&A, 440, 767) of the sky south of? =?25?, is presented in this article.
Abstract: We present the final data release of observations of ?21-cm emission from Galactic neutral hydrogen over the entire sky, merging the Leiden/Dwingeloo Survey (LDS: Hartmann & Burton 1997, Atlas of Galactic Neutral Hydrogen) of the sky north of ? = ?30? with the Instituto Argentino de Radioastronomia Survey (IAR: Arnal et al. 2000, AA and Bajaja et al. 2005, A&A, 440, 767) of the sky south of ? = ?25?. The angular resolution of the combined material is HPBW ? 0. ?6. The LSR velocity coverage spans the interval ?450 km s?1 to +400 km s?1, at a resolution of 1.3 kms?1. The data were corrected for stray radiation at the Institute for Radioastronomy of the University of Bonn, refining the original correction applied to the LDS. The rms brightness-temperature noise of the merged database is 0.07?0.09 K. Residual errors in the profile wings due to defects in the correction for stray radiation are for most of the data below a level of 20?40 mK. It would be necessary to construct a telescope with a main beam efficiency of ?MB >? 99% to achieve the same accuracy. The merged and refined material entering the LAB Survey of Galactic HI is intended to be a general resource useful to a wide range of studies of the physical and structural characteristices of the Galactic interstellar environment. The LAB Survey is the most sensitive Milky Way HI survey to date, with the most extensive coverage both spatially and kinematically.

4,228 citations

Journal ArticleDOI
TL;DR: In this article, a large-scale CO survey of the first and second Galactic quadrants and the nearby molecular cloud complexes in Orion and Taurus, obtained with the CfA 1.2 m telescope, was combined with 31 other surveys obtained over the past two decades with that instrument and a similar telescope on Cerro Tololo in Chile, to produce a new composite CO survey.
Abstract: New large-scale CO surveys of the first and second Galactic quadrants and the nearby molecular cloud complexes in Orion and Taurus, obtained with the CfA 1.2 m telescope, have been combined with 31 other surveys obtained over the past two decades with that instrument and a similar telescope on Cerro Tololo in Chile, to produce a new composite CO survey of the entire Milky Way. The survey consists of 488,000 spectra that Nyquist or beamwidth ( °) sample the entire Galactic plane over a strip 4°-10° wide in latitude, and beamwidth or ° sample nearly all large local clouds at higher latitudes. Compared with the previous composite CO survey of Dame et al. (1987), the new survey has 16 times more spectra, up to 3.4 times higher angular resolution, and up to 10 times higher sensitivity per unit solid angle. Each of the component surveys was integrated individually using clipping or moment masking to produce composite spatial and longitude-velocity maps of the Galaxy that display nearly all of the statistically significant emission in each survey but little noise. The composite maps provide detailed information on individual molecular clouds, suggest relationships between clouds and regions widely separated on the sky, and clearly display the main structural features of the molecular Galaxy. In addition, since the gas, dust, and Population I objects associated with molecular clouds contribute to the Galactic emission in every major wavelength band, the precise kinematic information provided by the present survey will form the foundation for many large-scale Galactic studies. A map of molecular column density predicted from complete and unbiased far-infrared and 21 cm surveys of the Galaxy was used both to determine the completeness of the present survey and to extrapolate it to the entire sky at |b| 5°), X shows little systematic variation with latitude from a mean value of (1.8 ± 0.3) × 1020 cm-2 K-1 km-1 s. Given the large sky area and large quantity of CO data analyzed, we conclude that this is the most reliable measurement to date of the mean X value in the solar neighborhood.

2,266 citations

01 Feb 1997
TL;DR: In this article, the Dwingeloo telescope was used for observing the H1 sky. But the H-1 data cube was not used for the complete H1 data set.
Abstract: 1. Introduction 2. Project motivation 3. Background 4. The Dwingeloo telescope 5. Observing strategy and parameters 6. Initial data reduction 7. Radio interference 8. Stray-radiation correction 9. Accuracy of the survey spectra 10. Preparation of the complete H1 data cube 11. Contamination by external galaxies 12. Atlas of moment maps of the H1 sky 13. CD-ROM 14. Epilogue Acknowledgements References.

530 citations

Journal ArticleDOI
TL;DR: In this paper, a reexamination of the Local Group hypothesis for the high-velocity clouds (HVCs) connects their properties to the hierarchical structure formation scenario and to the gas seen in absorption toward quasars.
Abstract: We suggest that the high-velocity clouds (HVCs) are large clouds, with typical diameters of 25 kpc, containing 3×107 M☉ of neutral gas and 3×108 M☉ of dark matter, falling onto the Local Group; altogether the HVCs contain 1010 M☉ of neutral gas. Our reexamination of the Local Group hypothesis for the HVCs connects their properties to the hierarchical structure formation scenario and to the gas seen in absorption toward quasars. We show that at least one HVC complex (besides the Magellanic Stream) must be extragalactic at a distance of more than 40 kpc from the Galactic center, with a diameter greater than 20 kpc and a mass of more than 108 M☉. We discuss a number of other clouds that are positionally associated with the Local Group galaxies, and we show that the entire ensemble of HVCs is inconsistent with a Galactic origin. The observed kinematics imply rather that the HVCs are falling toward the Local Group barycenter. We simulate the dynamical evolution of the Local Group and find that material falling onto the Local Group reproduces the location of two of the three most significant groupings of clouds and the kinematics of the entire cloud ensemble (excluding the Magellanic Stream). We interpret the third grouping (the A, C, and M complexes) as the nearest HVC. It is tidally unstable and is falling onto the Galactic disk. We interpret the more distant HVCs as gas contained within dark matter "minihalos" moving along filaments toward the Local Group. Most poor galaxy groups should contain similar H I clouds bound to the group at large distances from the individual galaxies. We suggest that the HVCs are local analogs of the Lyman limit absorbing clouds observed against distant quasars. Our picture implies that the chemical evolution of the Galactic disk is governed by episodic infall of metal-poor HVC gas that only slowly mixes with the rest of the interstellar medium. We argue that there is a Galactic fountain in the Milky Way, but that the fountain does not explain the origin of the HVCs. Our analysis of the H I data leads to the detection of a vertical infall of low-velocity gas toward the plane and implies that the H I disk is not in hydrostatic equilibrium. We suggest that the fountain is manifested mainly by relatively local neutral gas with characteristic velocities of 6 km s-1 rather than 100 km s-1. The Local Group infall hypothesis makes a number of testable predictions. The HVCs should have subsolar metallicities. Their Hα emission should be less than that seen from the Magellanic Stream. The clouds should not be seen in absorption against nearby stars. The clouds should be detectable in both emission and absorption around other galaxy groups. We show that current observations are consistent with these predictions and discuss future tests.

463 citations

Journal ArticleDOI
TL;DR: In this article, the afterglow of the gamma-ray burst GRB 060206 was analyzed to determine the metallicity of the GRB absorber and the physical conditions in the circumburst medium.
Abstract: Aim: We present early optical spectroscopy of the afterglow of the gamma-ray burst GRB 060206 with the aim of determining the metallicity of the GRB absorber and the physical conditions in the circumburst medium. We also discuss how GRBs may be important complementary probes of cosmic chemical evolution. Method: Absorption line study of the GRB afterglow spectrum. Results: We determine the redshift of the GRB to be z=4.04795+/-0.00020. Based on the measurement of the neutral hydrogen column density from the damped Lyman-alpha line and the metal content from weak, unsaturated Sii lines we derive a metallicity of [S/H] =-0.84+/-0.10. This is one of the highest metallicities measured from absorption lines at z~4. From the very high column densities for the forbidden Siii*, Oi*, and Oi** lines we infer very high densities and low temperatures in the system. There is evidence for the presence of H$_2$ molecules with logN(H_2) ~ 17.0, translating into a molecular fraction of logf \~ -3.5 with f=2N(H_2)/(2N(H_2)+ N(Hi)). Even if GRBs are only formed by single massive stars with metallicities below ~0.3Z(solar), they could still be fairly unbiased tracers of the bulk of the star formation at z>2. Hence, metallicities as derived for GRB060206 here for a complete sample of GRB afterglows will directly show the distribution of metallicities for representative star-forming galaxies at these redshifts.

183 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a reprocessed composite of the COBE/DIRBE and IRAS/ISSA maps, with the zodiacal foreground and confirmed point sources removed, is presented.
Abstract: We present a full-sky 100 μm map that is a reprocessed composite of the COBE/DIRBE and IRAS/ISSA maps, with the zodiacal foreground and confirmed point sources removed. Before using the ISSA maps, we remove the remaining artifacts from the IRAS scan pattern. Using the DIRBE 100 and 240 μm data, we have constructed a map of the dust temperature so that the 100 μm map may be converted to a map proportional to dust column density. The dust temperature varies from 17 to 21 K, which is modest but does modify the estimate of the dust column by a factor of 5. The result of these manipulations is a map with DIRBE quality calibration and IRAS resolution. A wealth of filamentary detail is apparent on many different scales at all Galactic latitudes. In high-latitude regions, the dust map correlates well with maps of H I emission, but deviations are coherent in the sky and are especially conspicuous in regions of saturation of H I emission toward denser clouds and of formation of H2 in molecular clouds. In contrast, high-velocity H I clouds are deficient in dust emission, as expected. To generate the full-sky dust maps, we must first remove zodiacal light contamination, as well as a possible cosmic infrared background (CIB). This is done via a regression analysis of the 100 μm DIRBE map against the Leiden-Dwingeloo map of H I emission, with corrections for the zodiacal light via a suitable expansion of the DIRBE 25 μm flux. This procedure removes virtually all traces of the zodiacal foreground. For the 100 μm map no significant CIB is detected. At longer wavelengths, where the zodiacal contamination is weaker, we detect the CIB at surprisingly high flux levels of 32 ± 13 nW m-2 sr-1 at 140 μm and of 17 ± 4 nW m-2 sr-1 at 240 μm (95% confidence). This integrated flux ~2 times that extrapolated from optical galaxies in the Hubble Deep Field. The primary use of these maps is likely to be as a new estimator of Galactic extinction. To calibrate our maps, we assume a standard reddening law and use the colors of elliptical galaxies to measure the reddening per unit flux density of 100 μm emission. We find consistent calibration using the B-R color distribution of a sample of the 106 brightest cluster ellipticals, as well as a sample of 384 ellipticals with B-V and Mg line strength measurements. For the latter sample, we use the correlation of intrinsic B-V versus Mg2 index to tighten the power of the test greatly. We demonstrate that the new maps are twice as accurate as the older Burstein-Heiles reddening estimates in regions of low and moderate reddening. The maps are expected to be significantly more accurate in regions of high reddening. These dust maps will also be useful for estimating millimeter emission that contaminates cosmic microwave background radiation experiments and for estimating soft X-ray absorption. We describe how to access our maps readily for general use.

15,988 citations

Journal ArticleDOI
01 Jan 2000-Icarus
TL;DR: Protostars and Planets VI brings together more than 250 contributing authors at the forefront of their field, conveying the latest results in this research area and establishing a new foundation for advancing our understanding of stellar and planetary formation as mentioned in this paper.

4,461 citations

Journal ArticleDOI
TL;DR: The final data release of observations of 21 cm emission from Galactic neutral hydrogen over the entire sky, merging the Leiden/Dwingeloo Survey (LDS: Hartmann & Burton 1997, Atlas of Galactic Neutral Hydrogen) with the Instituto Argentino de Radioastronomia Survey (IAR: Arnal et al. 2000, AA and Bajaja et al., 2005, A&A, 440, 767) of the sky south of? =?25?, is presented in this article.
Abstract: We present the final data release of observations of ?21-cm emission from Galactic neutral hydrogen over the entire sky, merging the Leiden/Dwingeloo Survey (LDS: Hartmann & Burton 1997, Atlas of Galactic Neutral Hydrogen) of the sky north of ? = ?30? with the Instituto Argentino de Radioastronomia Survey (IAR: Arnal et al. 2000, AA and Bajaja et al. 2005, A&A, 440, 767) of the sky south of ? = ?25?. The angular resolution of the combined material is HPBW ? 0. ?6. The LSR velocity coverage spans the interval ?450 km s?1 to +400 km s?1, at a resolution of 1.3 kms?1. The data were corrected for stray radiation at the Institute for Radioastronomy of the University of Bonn, refining the original correction applied to the LDS. The rms brightness-temperature noise of the merged database is 0.07?0.09 K. Residual errors in the profile wings due to defects in the correction for stray radiation are for most of the data below a level of 20?40 mK. It would be necessary to construct a telescope with a main beam efficiency of ?MB >? 99% to achieve the same accuracy. The merged and refined material entering the LAB Survey of Galactic HI is intended to be a general resource useful to a wide range of studies of the physical and structural characteristices of the Galactic interstellar environment. The LAB Survey is the most sensitive Milky Way HI survey to date, with the most extensive coverage both spatially and kinematically.

4,228 citations

Journal ArticleDOI
23 Jun 2006-Science
TL;DR: A general recipe for the design of media that create perfect invisibility within the accuracy of geometrical optics is developed, which can be applied to escape detection by other electromagnetic waves or sound.
Abstract: An invisibility device should guide light around an object as if nothing were there, regardless of where the light comes from. Ideal invisibility devices are impossible, owing to the wave nature of light. This study develops a general recipe for the design of media that create perfect invisibility within the accuracy of geometrical optics. The imperfections of invisibility can be made arbitrarily small to hide objects that are much larger than the wavelength. With the use of modern metamaterials, practical demonstrations of such devices may be possible. The method developed here can also be applied to escape detection by other electromagnetic waves or sound.

3,850 citations

Journal ArticleDOI
TL;DR: In this article, the substructure clumps are on orbits that take a large fraction of them through the stellar disk, leading to significant resonant and impulsive heating, and the model predicts that the virialized extent of the Milky Way's halo should contain about 500 satellites with circular velocities larger than the Draco and Ursa Minor systems, i.e., bound masses 108 M☉ and tidally limited sizes 1 kpc.
Abstract: We use numerical simulations to examine the substructure within galactic and cluster mass halos that form within a hierarchical universe. Clusters are easily reproduced with a steep mass spectrum of thousands of substructure clumps that closely matches the observations. However, the survival of dark matter substructure also occurs on galactic scales, leading to the remarkable result that galaxy halos appear as scaled versions of galaxy clusters. The model predicts that the virialized extent of the Milky Way's halo should contain about 500 satellites with circular velocities larger than the Draco and Ursa Minor systems, i.e., bound masses 108 M☉ and tidally limited sizes 1 kpc. The substructure clumps are on orbits that take a large fraction of them through the stellar disk, leading to significant resonant and impulsive heating. Their abundance and singular density profiles have important implications for the existence of old thin disks, cold stellar streams, gravitational lensing, and indirect/direct detection experiments.

3,037 citations