scispace - formally typeset
Search or ask a question
Author

D. H. Tracy

Bio: D. H. Tracy is an academic researcher from University of Wisconsin-Madison. The author has contributed to research in topics: Interferometry & Luminous flux. The author has an hindex of 2, co-authored 3 publications receiving 260 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A high spectral resolution lidar technique to measure optical scattering properties of atmospheric aerosols is described, and Aerosol optical properties, such as the backscatter ratio, optical depth, extinctionCross section, scattering cross section, and theBackscatter phase function are derived.
Abstract: A high spectral resolution lidar technique to measure optical scattering properties of atmospheric aerosols is described. Light backscattered by the atmosphere from a narrowband optically pumped oscillator-amplifier dye laser is separated into its Doppler broadened molecular and elastically scattered aerosol components by a two-channel Fabry-Perot polyetalon interferometer. Aerosol optical properties, such as the backscatter ratio, optical depth, extinction cross section, scattering cross section, and the backscatter phase function, are derived from the two-channel measurements.

270 citations

Journal ArticleDOI
TL;DR: Tests of an instrument designed for Fourier transform spectroscopy in the 500-1000-microm spectral range are reported and shown to be in agreement with the analysis of the all-reflection Michelson interferometer.
Abstract: The beam splitter of the all-reflection Michelson interferometer consists of a combination of three parallel diffraction gratings. This paper extends the analysis of the instrument to include the effects of lateral errors in the grating adjustment (i.e., displacements parallel to the grating faces and perpendicular to the grooves). Such errors are shown to introduce a phase shift independent of wavenumber and proportional to grating order number. Tests of an instrument designed for Fourier transform spectroscopy in the 500–1000-μm spectral range are reported and shown to be in agreement with the analysis. For wavenumbers which pass through the instrument in 2 or more orders, cross-order interference effects are expected to occur which cause rapid variations in the efficiency vs wavenumber curve. This possibility should be eliminated in the design of a practical instrument. The resolution of the test instrument (1.6 cm−1) was insufficient to reveal this effect.

9 citations

Journal ArticleDOI
TL;DR: The purpose of this Letter is to point out that these results are incorrect and to show how the salient formulas in Ref. 1 can be corrected.
Abstract: A recent article by Dupoisot et al. compares the properties of a conventional central aperture Fabry-Perot spectrometer with one employing multiple annular apertures to isolate off-axis F.P. rings. The authors conclude that the flux transmitted by the central aperture is only about half of that transmitted by each of the other rings and obtain a luminosity-resolving power product for the conventional F.P. spectrometer, which is more than a factor of 2 less than the standard value. The purpose of this Letter is to point out that these results are incorrect and to show how the salient formulas in Ref. 1 can be corrected. The discrepancy apparently originates in the assumption by Dupoisot et al. of integer axial order number for their F.P. Actually, maximum flux of a monochromatic line through a

1 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Examples covering the measured range of extinction-to-backscatter ratios (lidar ratios) in ice clouds are presented and simple backscatter lidars can provide reliable information about the cloud optical depth and the mean cloud lidar ratio.
Abstract: Height profiles of the extinction and the backscatter coefficients in cirrus clouds are determined independently from elastic- and inelastic- (Raman) backscatter signals. An extended error analysis is given. Examples covering the measured range of extinction-to-backscatter ratios (lidar ratios) in ice clouds are presented. Lidar ratios between 5 and 15 sr are usually found. A strong variation between 2 and 20 sr can be observed within one cloud profile. Particle extinction coefficients determined from inelastic-backscatter signals and from elastic-backscatter signals by using the Klett method are compared. The Klett solution of the extinction profile can be highly erroneous if the lidar ratio varies along the measuring range. On the other hand, simple backscatter lidars can provide reliable information about the cloud optical depth and the mean cloud lidar ratio.

668 citations

Journal ArticleDOI
TL;DR: The design of the airborne HSRL, the internal calibration and accuracy of the instrument, data products produced, and observations and calibration data from the first two field missions are discussed.
Abstract: A compact, highly robust airborne High Spectral Resolution Lidar (HSRL) that provides measurements of aerosol backscatter and extinction coefficients and aerosol depolarization at two wavelengths has been developed, tested, and deployed on nine field experiments (over 650 flight hours). A unique and advantageous design element of the HSRL system is the ability to radiometrically calibrate the instrument internally, eliminating any reliance on vicarious calibration from atmospheric targets for which aerosol loading must be estimated. This paper discusses the design of the airborne HSRL, the internal calibration and accuracy of the instrument, data products produced, and observations and calibration data from the first two field missions: the Joint Intercontinental Chemical Transport Experiment--Phase B (INTEX-B)/Megacity Aerosol Experiment--Mexico City (MAX-Mex)/Megacities Impacts on Regional and Global Environment (MILAGRO) field mission (hereafter MILAGRO) and the Gulf of Mexico Atmospheric Composition and Climate Study/Texas Air Quality Study II (hereafter GoMACCS/TexAQS II).

426 citations

Journal ArticleDOI
TL;DR: The EarthCARE satellite mission as discussed by the authors provides global profiles of cloud, aerosol, precipitation, and associated radiative properties inferred from a combination of measurements made by collocated active and passive sensors.
Abstract: The collective representation within global models of aerosol, cloud, precipitation, and their radiative properties remains unsatisfactory. They constitute the largest source of uncertainty in predictions of climatic change and hamper the ability of numerical weather prediction models to forecast high-impact weather events. The joint ESA-JAXA EarthCARE satellite mission, scheduled for launch in 2017, will help to resolve these weaknesses by providing global profiles of cloud, aerosol, precipitation, and associated radiative properties inferred from a combination of measurements made by its collocated active and passive sensors. EarthCARE will improve our understanding of cloud and aerosol processes by extending the invaluable dataset acquired by the A-Train satellites CloudSat, CALIPSO, and Aqua. Specifically, EarthCARE's Cloud Profling Radar, with 7 dB more sensitivity than CloudSat, will detect more thin clouds and its Doppler capability will provide novel information on convection, precipitating ice particle and raindrop fall speeds. EarthCARE's 355-nm High Spectral Resolution Lidar will measure directly and accurately cloud and aerosol extinction and optical depth. Combining this with backscatter and polarization information should lead to an unprecedented ability to identify aerosol type. The Multi-Spectral Imager will provide a context for, and the ability to construct the cloud and aerosol distribution in 3D domains around the narrow 2D retrieved cross-section. The consistency of the retrievals will be assessed to within a target of ±10 W m−2 on the (10 km2) scale by comparing the multi-view Broad-Band Radiometer observations to the top-of-atmosphere fluxes estimated by 3D radiative transfer models acting on retrieved 3D domains.

421 citations

Journal ArticleDOI
TL;DR: The European Aerosol Research Lidar Network (EARLINET) as mentioned in this paper was founded as a research project for establishing a quantitative, comprehensive, and statistically significant database for the horizontal, vertical, and tempo-ral distribution of aerosols on a continental scale.
Abstract: The European Aerosol Research Lidar Network, EARLINET, was founded in 2000 as a research project for establishing a quantitative, comprehensive, and statistically significant database for the horizontal, vertical, and tempo- ral distribution of aerosols on a continental scale. Since then EARLINET has continued to provide the most extensive col- lection of ground-based data for the aerosol vertical distribu- tion over Europe. This paper gives an overview of the network's main de- velopments since 2000 and introduces the dedicated EAR- LINET special issue, which reports on the present innova- tive and comprehensive technical solutions and scientific re- sults related to the use of advanced lidar remote sensing tech- niques for the study of aerosol properties as developed within the network in the last 13 years. Since 2000, EARLINET has developed greatly in terms of number of stations and spatial distribution: from 17 sta- tions in 10 countries in 2000 to 27 stations in 16 countries in 2013. EARLINET has developed greatly also in terms of technological advances with the spread of advanced multi- wavelength Raman lidar stations in Europe. The develop- ments for the quality assurance strategy, the optimization of instruments and data processing, and the dissemination of data have contributed to a significant improvement of the net- work towards a more sustainable observing system, with an increase in the observing capability and a reduction of oper- ational costs. Consequently, EARLINET data have already been ex- tensively used for many climatological studies, long-range transport events, Saharan dust outbreaks, plumes from vol- canic eruptions, and for model evaluation and satellite data validation and integration. Future plans are aimed at continuous measurements and near-real-time data delivery in close cooperation with other ground-based networks, such as in the ACTRIS (Aerosols, Clouds, and Trace gases Research InfraStructure Network) www.actris.net, and with the modeling and satellite commu- nity, linking the research community with the operational world, with the aim of establishing of the atmospheric part of the European component of the integrated global observ- ing system.

417 citations

Journal ArticleDOI
TL;DR: In this article, a methodology based on observations of known aerosol types is used to qualitatively classify the extensive set of airborne high-spectral resolution lidar measurements into eight separate types.
Abstract: . The NASA Langley Research Center (LaRC) airborne High Spectral Resolution Lidar (HSRL) on the NASA B200 aircraft has acquired extensive datasets of aerosol extinction (532 nm), aerosol optical depth (AOD) (532 nm), backscatter (532 and 1064 nm), and depolarization (532 and 1064 nm) profiles during 18 field missions that have been conducted over North America since 2006. The lidar measurements of aerosol intensive parameters (lidar ratio, depolarization, backscatter color ratio, and spectral depolarization ratio) are shown to vary with location and aerosol type. A methodology based on observations of known aerosol types is used to qualitatively classify the extensive set of HSRL aerosol measurements into eight separate types. Several examples are presented showing how the aerosol intensive parameters vary with aerosol type and how these aerosols are classified according to this new methodology. The HSRL-based classification reveals vertical variability of aerosol types during the NASA ARCTAS field experiment conducted over Alaska and northwest Canada during 2008. In two examples derived from flights conducted during ARCTAS, the HSRL classification of biomass burning smoke is shown to be consistent with aerosol types derived from coincident airborne in situ measurements of particle size and composition. The HSRL retrievals of AOD and inferences of aerosol types are used to apportion AOD to aerosol type; results of this analysis are shown for several experiments.

393 citations