scispace - formally typeset
Search or ask a question
Author

D. Helling

Bio: D. Helling is an academic researcher. The author has contributed to research in topics: Ice shelf & Ice sheet. The author has an hindex of 3, co-authored 5 publications receiving 574 citations.

Papers
More filters
Journal ArticleDOI
19 Mar 2009-Nature
TL;DR: A marine glacial record from the upper 600 m of the AND-1B sediment core recovered from beneath the northwest part of the Ross ice shelf is presented and well-dated, ∼40-kyr cyclic variations in ice-sheet extent linked to cycles in insolation influenced by changes in the Earth’s axial tilt (obliquity) during the Pliocene are demonstrated.
Abstract: Thirty years after oxygen isotope records from microfossils deposited in ocean sediments confirmed the hypothesis that variations in the Earth's orbital geometry control the ice ages, fundamental questions remain over the response of the Antarctic ice sheets to orbital cycles. Furthermore, an understanding of the behaviour of the marine-based West Antarctic ice sheet (WAIS) during the 'warmer-than-present' early-Pliocene epoch ( approximately 5-3 Myr ago) is needed to better constrain the possible range of ice-sheet behaviour in the context of future global warming. Here we present a marine glacial record from the upper 600 m of the AND-1B sediment core recovered from beneath the northwest part of the Ross ice shelf by the ANDRILL programme and demonstrate well-dated, approximately 40-kyr cyclic variations in ice-sheet extent linked to cycles in insolation influenced by changes in the Earth's axial tilt (obliquity) during the Pliocene. Our data provide direct evidence for orbitally induced oscillations in the WAIS, which periodically collapsed, resulting in a switch from grounded ice, or ice shelves, to open waters in the Ross embayment when planetary temperatures were up to approximately 3 degrees C warmer than today and atmospheric CO(2) concentration was as high as approximately 400 p.p.m.v. (refs 5, 6). The evidence is consistent with a new ice-sheet/ice-shelf model that simulates fluctuations in Antarctic ice volume of up to +7 m in equivalent sea level associated with the loss of the WAIS and up to +3 m in equivalent sea level from the East Antarctic ice sheet, in response to ocean-induced melting paced by obliquity. During interglacial times, diatomaceous sediments indicate high surface-water productivity, minimal summer sea ice and air temperatures above freezing, suggesting an additional influence of surface melt under conditions of elevated CO(2).

605 citations

01 Jan 2007
TL;DR: In this paper, preliminary data and results on petrology and geochemistry of AND-1B core were reported, and a detailed analysis of the petrological and geochemical properties were presented.
Abstract: This section reports preliminary data and results on petrology and geochemistry of AND-1B core.

31 citations

01 Jan 2007
TL;DR: The ANDRILL (Antarctic Geological Drilling) MIS deep drilling project (McMurdo Sound, NE Ross Ice Shelf, drilled core AND-1B during austral summer 2006/2007) is located in a flexural moat basin filled with glaciomarine, terrigenous, volcanic, and biogenic sediments.
Abstract: Antarctica and especially its ice sheets play a major role in both the global ocean current system andclimate. The ANDRILL (Antarctic Geological Drilling) MIS deep drilling project (McMurdo Sound, NE Ross Ice Shelf, drilled core AND-1B during austral summer 2006/2007) is located in a flexural moat basin filled with glaciomarine, terrigenous, volcanic, and biogenic sediments (Horgan et al., 2005). This basin contains a well-preserved outstanding record of paleoclimate history. During the drilling phase, some major and minor chemical elements were measured directly using a non-destructive X-Ray Fluorescence Core Scanner (XRF-CS) method. For the first time, sediments beneath an iceshelf were drilled, which provides a unique opportunity to investigate the variability of the Ross Ice Shelf. The sediment core covers a time period much longer than any Antarctic ice core record. The high-resolution data set of non-destructive XRF-core scans makes it possible to estimate climate changes on small time scales. Due to the early stage of the project phase, this report will focus mainly on data preparation and correction and provides a first rough interpretation of the measured data.

3 citations

01 Dec 2008
TL;DR: In this paper, the authors used a non-destructive X-Ray Fluorescence Core Scanner (XRF-CS, Avaatech) to quantify the biogenic opal content in marine sediments, and found a strong positive correlation between the counts per second of the X-ray-CS Ag peak area and the measured opal leaching data.
Abstract: Quantification of biogenic opal in marine sediments is a time consuming job, but the results could indicate periods of higher bioproductivity and warmer conditions than today at the Antarctic margin. Within the international Antarctic Geological Drilling Program (ANDRILL), core AND-1B was drilled and recovered a 1285 m sequence from a flexural moat basin filled with glacimarine, terrigenous, volcanic and biogenic sediments below the McMurdo Ice Shelf. Our main goal is to study the variability and the stability of the Ross Ice Shelf from Miocene to Recent. The melting and collapse of large Antarctic ice shelves may cause a significant sea level rise because of accelerated inland ice glacier surges into the ocean. Biogenic opal content in sediments can be deduced indirectly from grain density measurements on single samples, or faster and more continuous by gamma ray attenuation measurements on the core, with subsequent wet bulk and grain density calculations. Spectral colour reflectance (b* value) measurements on the split core surface can also be a fast tool for opal content quantification. Of course, they all have disadvantages in comparison to direct measurement on samples using X-ray diffraction or geochemical leaching methods. Some major and minor chemical elements were measured directly on split core surfaces with a non- destructive X-Ray Fluorescence Core Scanner method (XRF-CS, Avaatech) in the field. Quantitative geochemical analyses like determination of total inorganic and organic carbon (TOC), biogenic opal as well as major and minor elements were done on core samples. We found a strong positive correlation between the counts per second of the XRF-CS Ag peak area and the biogenic opal content of the samples (r=0.81) not only in the AND-1B core but in others as well from the Antarctic margin. In literature, it is noted that diatoms could accumulate Ag in sediments, so at first we were pleased to find this Ag enrichment with our tool. But further geochemical analyses revealed that measuring these low Ag concentrations and their variability (< 2ppm) is not possible or at least problematic with the XRF-CS. The detector of the XRF-CS has an Ag collimator, possibly acting as an amplifier on perhaps higher induced X-ray emissions in opal rich sediments within the Ag energy spectrum range, which might have nothing to do with Ag itself. However, we are still studying the physics behind this measurement phenomenon. Nevertheless, this Ag peak can be used as a proxy for biogenic opal concentrations. It is negatively correlated to Fe and Ti and variability downcore has a high signal to noise ratio. Combining the opal calculations from fast measurements of the Ag peak (opal-Ag), the grain density (opal-GD), and the b* value (opal-b*) we yielded a new multi-parameter proxy (opal-MP) for a high-resolution record of biogenic opal concentration in the upper 600m of the core (spacing: about 2cm or 300y). This opal-MP proxy correlates very well with measured opal leaching data (r=0.88, n=481). The biogenic opal concentrations in combination with other high-resolution data will be used as a cyclostratigraphic approach to understand paleoenvironmental and climate changes. Periods with much higher accumulation of biogenic opal than today were detected in the core that indicate a retreat and perhaps a total decay of the Ross Ice Shelf

2 citations


Cited by
More filters
Journal ArticleDOI
18 Jun 2010-Science
TL;DR: Although there is considerable uncertainty about the spatial and temporal details, climate change is clearly and fundamentally altering ocean ecosystems and will continue to create enormous challenges and costs for societies worldwide, particularly those in developing countries.
Abstract: Marine ecosystems are centrally important to the biology of the planet, yet a comprehensive understanding of how anthropogenic climate change is affecting them has been poorly developed. Recent studies indicate that rapidly rising greenhouse gas concentrations are driving ocean systems toward conditions not seen for millions of years, with an associated risk of fundamental and irreversible ecological transformation. The impacts of anthropogenic climate change so far include decreased ocean productivity, altered food web dynamics, reduced abundance of habitat-forming species, shifting species distributions, and a greater incidence of disease. Although there is considerable uncertainty about the spatial and temporal details, climate change is clearly and fundamentally altering ocean ecosystems. Further change will continue to create enormous challenges and costs for societies worldwide, particularly those in developing countries.

2,408 citations

Journal ArticleDOI
31 Mar 2016-Nature
TL;DR: A model coupling ice sheet and climate dynamics—including previously underappreciated processes linking atmospheric warming with hydrofracturing of buttressing ice shelves and structural collapse of marine-terminating ice cliffs—is calibrated against Pliocene and Last Interglacial sea-level estimates and applied to future greenhouse gas emission scenarios.
Abstract: Polar temperatures over the last several million years have, at times, been slightly warmer than today, yet global mean sea level has been 6-9 metres higher as recently as the Last Interglacial (130,000 to 115,000 years ago) and possibly higher during the Pliocene epoch (about three million years ago). In both cases the Antarctic ice sheet has been implicated as the primary contributor, hinting at its future vulnerability. Here we use a model coupling ice sheet and climate dynamics-including previously underappreciated processes linking atmospheric warming with hydrofracturing of buttressing ice shelves and structural collapse of marine-terminating ice cliffs-that is calibrated against Pliocene and Last Interglacial sea-level estimates and applied to future greenhouse gas emission scenarios. Antarctica has the potential to contribute more than a metre of sea-level rise by 2100 and more than 15 metres by 2500, if emissions continue unabated. In this case atmospheric warming will soon become the dominant driver of ice loss, but prolonged ocean warming will delay its recovery for thousands of years.

1,433 citations

Journal ArticleDOI
19 Mar 2009-Nature
TL;DR: A combined ice sheet/ice shelf model capable of high-resolution nesting with a new treatment of grounding-line dynamics and ice-shelf buttressing is used to simulate Antarctic ice sheet variations over the past five million years, indicating a long-term trend from more frequently collapsed to more glaciated states.
Abstract: Changes in Earth's orbit are known to influence climate shifts from cold glacials to warm interglacials. How the vast West Antarctic ice sheet responds to these fluctuations is uncertain but, because its collapse could raise sea levels by about 5 metres, of great interest. Naish et al. have analysed the AND-1B ocean sediment core, extracted from beneath the Ross Ice Shelf as part of the ANDRILL drilling project, and find evidence that the ice sheet collapsed periodically during the early Pliocene (3-5 million years ago), when atmospheric CO2 levels were similar to, or slightly higher than today's. The pattern of collapse suggests an influence of approximately 40,000-year cycles in the tilt of Earth's rotational axis (obliquity). Also in this issue of Nature, in a numerical modelling study focused on the past 5 million years in Antarctica, David Pollard and Robert DeConto combine ice sheet (land-supported) and ice shelf (water-supported) modelling approaches to simulate the movement of the grounding line — the border between land and sea ice. Their results show that over the past 5 million years, the West Antarctic ice sheet transitioned between full, intermediate, and collapsed states in just a few thousand years. This means that the ice sheet is likely to disintegrate if ocean temperatures in the area rise by 5 C. If the West Antarctic Ice Sheet (WAIS) melted, sea levels would rise by about 5 m; such changes are thought to have occurred in the past but could not be simulated by models. Pollard and DeConto combine ice-sheet with ice-shelf modelling, and show that over the past 5 million years, the WAIS transitioned among full, intermediate, and collapsed states in only a few thousand years, suggesting possible disintegration of the WAIS if ocean temperatures in the area rise by 5 °C. The West Antarctic ice sheet (WAIS), with ice volume equivalent to ∼5 m of sea level1, has long been considered capable of past and future catastrophic collapse2,3,4. Today, the ice sheet is fringed by vulnerable floating ice shelves that buttress the fast flow of inland ice streams. Grounding lines are several hundred metres below sea level and the bed deepens upstream, raising the prospect of runaway retreat3,5. Projections of future WAIS behaviour have been hampered by limited understanding of past variations and their underlying forcing mechanisms6,7. Its variation since the Last Glacial Maximum is best known, with grounding lines advancing to the continental-shelf edges around ∼15 kyr ago before retreating to near-modern locations by ∼3 kyr ago8. Prior collapses during the warmth of the early Pliocene epoch9 and some Pleistocene interglacials have been suggested indirectly from records of sea level and deep-sea-core isotopes, and by the discovery of open-ocean diatoms in subglacial sediments10. Until now11, however, little direct evidence of such behaviour has been available. Here we use a combined ice sheet/ice shelf model12 capable of high-resolution nesting with a new treatment of grounding-line dynamics and ice-shelf buttressing5 to simulate Antarctic ice sheet variations over the past five million years. Modelled WAIS variations range from full glacial extents with grounding lines near the continental shelf break, intermediate states similar to modern, and brief but dramatic retreats, leaving only small, isolated ice caps on West Antarctic islands. Transitions between glacial, intermediate and collapsed states are relatively rapid, taking one to several thousand years. Our simulation is in good agreement with a new sediment record (ANDRILL AND-1B) recovered from the western Ross Sea11, indicating a long-term trend from more frequently collapsed to more glaciated states, dominant 40-kyr cyclicity in the Pliocene, and major retreats at marine isotope stage 31 (∼1.07 Myr ago) and other super-interglacials.

931 citations

Journal ArticleDOI
10 Aug 2012-Science
TL;DR: The results suggest that the MPT was initiated by an abrupt increase in Antarctic ice volume 900 thousand years ago, and reveal the contributions of ice volume and temperature to glacial cycles, suggest when and why the Mid-Pleistocene Climate Transition occurred, and clarify how carbon is lost from the ocean-atmosphere during deglaciations but also changes because of ocean circulation.
Abstract: Earth’s climate underwent a fundamental change between 1250 and 700 thousand years ago, the mid-Pleistocene transition (MPT), when the dominant periodicity of climate cycles changed from 41 thousand to 100 thousand years in the absence of substantial change in orbital forcing. Over this time, an increase occurred in the amplitude of change of deep-ocean foraminiferal oxygen isotopic ratios, traditionally interpreted as defining the main rhythm of ice ages although containing large effects of changes in deep-ocean temperature. We have separated the effects of decreasing temperature and increasing global ice volume on oxygen isotope ratios. Our results suggest that the MPT was initiated by an abrupt increase in Antarctic ice volume 900 thousand years ago. We see no evidence of a pattern of gradual cooling, but near-freezing temperatures occur at every glacial maximum.

629 citations

Journal ArticleDOI
10 Jul 2015-Science
TL;DR: This work concludes that during recent interglacial periods, small increases in global mean temperature and just a few degrees of polar warming relative to the preindustrial period resulted in ≥6 m of GMSL rise, which is currently not possible to make a precise estimate of peak G MSL during the Pliocene.
Abstract: BACKGROUND:Although thermal expansion of seawater and melting of mountain glaciers have dominated global mean sea level (GMSL) rise over the last century, mass loss from the Greenland and Antarctic ice sheets is expected to exceed other contributions to GMSL rise under future warming. To better constrain polarice-sheetresponse to warmer temperatures, we draw on evidence from in- terglacial periods in the geologic record that ex- perienced warmer polar temperatures and higher GMSLs than present. Coastal records of sea level from these previous warm periods dem- onstrate geographic variability because of the influence of several geophysical processes that operate across a range of magnitudes and time scales. Inferring GMSL and ice- volume changes from these reconstructions is nontrivial and generally requires the use of geophysical models. ADVANCES: Interdisciplinary studies of geo- logic archives have ushered in a new era of deciphering magnitudes, rates, and sources of sea-level rise. Advances in our understanding of polar ice-sheet response to warmer climates have been made through an increase in the number and geographic distribution of sea- level reconstructions, better ice-sheet constraints, and the recognition that several geophysical processes cause spatially complex patterns in sea level. In particular, accounting for glacial isostatic processes helps to decipher spatial variability in coastal sea-level records and has reconciled a number of site-specific sea-level reconstructions for warm periods that have oc- curred within the past several hundred thou- sand years. This enables us to infer that during recent interglacial periods, small increases in

540 citations