scispace - formally typeset
Search or ask a question
Author

D. Hovestadt

Bio: D. Hovestadt is an academic researcher from Max Planck Society. The author has contributed to research in topics: Solar wind & Ion. The author has an hindex of 48, co-authored 184 publications receiving 8135 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The Cluster Ion Spectrometry (CIS) experiment as discussed by the authors measured the full, three-dimensional ion distribution of the major magnetospheric ions (H+, He+, He++, and O+) from the thermal energies to about 40 keV/e.
Abstract: . On board the four Cluster spacecraft, the Cluster Ion Spectrometry (CIS) experiment measures the full, three-dimensional ion distribution of the major magnetospheric ions (H+, He+, He++, and O+) from the thermal energies to about 40 keV/e. The experiment consists of two different instruments: a COmposition and DIstribution Function analyser (CIS1/CODIF), giving the mass per charge composition with medium (22.5°) angular resolution, and a Hot Ion Analyser (CIS2/HIA), which does not offer mass resolution but has a better angular resolution (5.6°) that is adequate for ion beam and solar wind measurements. Each analyser has two different sensitivities in order to increase the dynamic range. First tests of the instruments (commissioning activities) were achieved from early September 2000 to mid January 2001, and the operation phase began on 1 February 2001. In this paper, first results of the CIS instruments are presented showing the high level performances and capabilities of the instruments. Good examples of data were obtained in the central plasma sheet, magnetopause crossings, magnetosheath, solar wind and cusp measurements. Observations in the auroral regions could also be obtained with the Cluster spacecraft at radial distances of 4–6 Earth radii. These results show the tremendous interest of multispacecraft measurements with identical instruments and open a new area in magnetospheric and solar wind-magnetosphere interaction physics. Key words. Magnetospheric physics (magnetopause, cusp and boundary layers; magnetopheric configuration and dynamics; solar wind - magnetosphere interactions)

1,209 citations

Journal ArticleDOI
01 Dec 1985-Nature
TL;DR: In this paper, a velocity distribution extending up to double the solar wind velocity has been detected in interplanetary space, which unambiguously determines the source: interstellar neutrals, ionized and accelerated in solar wind.
Abstract: Singly-ionized helium with a velocity distribution extending up to double the solar wind velocity has been detected in interplanetary space. This distribution unambiguously determines the source: interstellar neutrals, ionized and accelerated in the solar wind. The observed significant flux increase in early December is due to the gravitational focusing of the interstellar neutral wind on the downwind side of the Sun.

378 citations

Journal ArticleDOI
TL;DR: The CELIAS experiment on SOHO is designed to measure the mass, ionic charge and energy of the low and high speed solar wind, of suprathermal ions, and of low energy flare particles as mentioned in this paper.
Abstract: The CELIAS experiment on SOHO is designed to measure the mass, ionic charge and energy of the low and high speed solar wind, of suprathermal ions, and of low energy flare particles. Through analysis of the elemental and isotopic abundances, the ionic charge state, and the velocity distributions of ions originating in the solar atmosphere, the investigation focuses on the plasma processes on various temporal and spatial scales in the solar chromosphere, transition zone, and corona. CELIAS includes 3 mass- and charge-discriminating sensors based on the time-of-flight technique: CTOF for the elemental, charge and velocity distribution of the solar wind, MTOF for the elemental and isotopic composition of the solar wind, and STOF for the mass, charge and energy distribution of suprathermal ions. The instrument will provide detailed in situ diagnostics of the solar wind and of accelerated particles, which will complement the optical and spectroscopic investigations of the solar atmosphere on SOHO. CELIAS also contains a Solar Extreme Ultraviolet Monitor, SEM, which continously measures the EUV flux in a wide band of 17 – 70 nm, and a narrow band around the 30.4 nm He II line.

267 citations

Book ChapterDOI
TL;DR: The Cluster Ion Spectrometry (CIS) experiment is a comprehensive ionic plasma spec-trometry package on-board the four Cluster spacecraft capable of obtaining full three-dimensional ion distributions with good time resolution (one spacecraft spin) with mass per charge composition determination as mentioned in this paper.
Abstract: The Cluster Ion Spectrometry (CIS) experiment is a comprehensive ionic plasma spec-trometry package on-board the four Cluster spacecraft capable of obtaining full three-dimensional ion distributions with good time resolution (one spacecraft spin) with mass per charge composition determination. The requirements to cover the scientific objectives cannot be met with a single instrument. The CIS package therefore consists of two different instruments, a Hot Ion Analyser (HIA) and a time-of-flight ion Composition and Distribution Function analyser (CODIF), plus a sophisticated dual-processor-based instrument-control and Data-Processing System (DPS), which permits extensive on-board data-processing. Both analysers use symmetric optics resulting in continuous, uniform, and well-characterised phase space coverage. CODIF measures the distributions of the major ions (H+, He+, He++, and O+) with energies from -0 to 40 keV/e with medium (22.5°) angular resolution and two different sensitivities. HIA does not offer mass resolution but, also having two different sensitivities, increases the dynamic range, and has an angular resolution capability (5.6° × 5.6°) adequate for ion-beam and solar-wind measurements.

257 citations

Journal ArticleDOI
TL;DR: In this paper, a long run of essentially continuous data (July 1992-July 1993) shows substantial acceleration of energetic electrons throughout much of the magnetosphere on rapid time scales and the acceleration appears to be due to solar wind velocity enhancements.
Abstract: High-energy electrons have been measured systematically in a low-altitude (520 × 675 km), nearly polar (inclination = 82°) orbit by sensitive instruments onboard the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX). Count rate channels with electron energy thresholds ranging from 0.4 MeV to 3.5 MeV in three different instruments have been used to examine relativistic electron variations as a function of L-shell parameter and time. A long run of essentially continuous data (July 1992–July 1993) shows substantial acceleration of energetic electrons throughout much of the magnetosphere on rapid time scales. This acceleration appears to be due to solar wind velocity enhancements and is surprisingly large in that the radiation belt “slot” region often is filled temporarily and electron fluxes are strongly enhanced even at very low L-values (L ∼ 2). A superposed epoch analysis shows that electron fluxes rise rapidly for 2.5 ≲ L ≲ 5. These increases occur on a time scale of order 1–2 days and are most abrupt for L-values near 3. The temporal decay rate of the fluxes is dependent on energy and L-value and may be described by J = Ke-t/to with to ≈ 5–10 days. Thus, these results suggest that the Earth's magnetosphere is a cosmic electron accelerator of substantial strength and efficiency.

229 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the theory of first order Fermi acceleration at collisionless astrophysical shock fronts is reviewed and it is argued that the wave amplitude is probably non-linear within sufficiently strong astrophysical shocks.

1,881 citations

Journal ArticleDOI
TL;DR: The Cluster Ion Spectrometry (CIS) experiment as discussed by the authors measured the full, three-dimensional ion distribution of the major magnetospheric ions (H+, He+, He++, and O+) from the thermal energies to about 40 keV/e.
Abstract: . On board the four Cluster spacecraft, the Cluster Ion Spectrometry (CIS) experiment measures the full, three-dimensional ion distribution of the major magnetospheric ions (H+, He+, He++, and O+) from the thermal energies to about 40 keV/e. The experiment consists of two different instruments: a COmposition and DIstribution Function analyser (CIS1/CODIF), giving the mass per charge composition with medium (22.5°) angular resolution, and a Hot Ion Analyser (CIS2/HIA), which does not offer mass resolution but has a better angular resolution (5.6°) that is adequate for ion beam and solar wind measurements. Each analyser has two different sensitivities in order to increase the dynamic range. First tests of the instruments (commissioning activities) were achieved from early September 2000 to mid January 2001, and the operation phase began on 1 February 2001. In this paper, first results of the CIS instruments are presented showing the high level performances and capabilities of the instruments. Good examples of data were obtained in the central plasma sheet, magnetopause crossings, magnetosheath, solar wind and cusp measurements. Observations in the auroral regions could also be obtained with the Cluster spacecraft at radial distances of 4–6 Earth radii. These results show the tremendous interest of multispacecraft measurements with identical instruments and open a new area in magnetospheric and solar wind-magnetosphere interaction physics. Key words. Magnetospheric physics (magnetopause, cusp and boundary layers; magnetopheric configuration and dynamics; solar wind - magnetosphere interactions)

1,209 citations

Journal ArticleDOI
Craig J. Pollock1, T. E. Moore1, A. D. Jacques1, James L. Burch2, U. Gliese1, Yoshifumi Saito, T. Omoto, Levon A. Avanov1, Levon A. Avanov3, A. C. Barrie1, Victoria N. Coffey4, John C. Dorelli1, Daniel J. Gershman3, Daniel J. Gershman5, Daniel J. Gershman1, Barbara L. Giles1, T. Rosnack1, C. Salo1, Shoichiro Yokota, M. L. Adrian1, C. Aoustin, C. Auletti1, S. Aung1, V. Bigio1, N. Cao1, Michael O. Chandler4, Dennis J. Chornay1, Dennis J. Chornay3, K. Christian1, George Clark1, George Clark6, George Clark7, Glyn Collinson1, Glyn Collinson6, T. Corris1, A. De Los Santos2, R. Devlin1, T. Diaz2, T. Dickerson1, C. Dickson1, A. Diekmann4, F. Diggs1, C. Duncan1, A. Figueroa-Vinas1, C. Firman1, M. Freeman2, N. Galassi1, K. Garcia1, G. Goodhart2, D. Guererro2, J. Hageman1, Jennifer Hanley2, E. Hemminger1, Matthew Holland1, M. Hutchins2, T. James1, W. Jones1, S. Kreisler1, Joseph Kujawski8, Joseph Kujawski1, V. Lavu1, J. V. Lobell1, E. LeCompte, A. Lukemire, Elizabeth MacDonald1, Al. Mariano1, Toshifumi Mukai, K. Narayanan1, Q. Nguyan1, M. Onizuka1, William R. Paterson1, S. Persyn2, Benjamin M. Piepgrass2, F. Cheney1, A. C. Rager6, A. C. Rager1, T. Raghuram1, A. Ramil1, L. S. Reichenthal1, H. Rodriguez2, Jean-Noël Rouzaud, A. Rucker1, Marilia Samara1, Jean-André Sauvaud, D. Schuster1, M. Shappirio1, K. Shelton1, D. Sher1, David Smith1, Kerrington D. Smith2, S. E. Smith6, S. E. Smith1, D. Steinfeld1, R. Szymkiewicz1, K. Tanimoto, J. Taylor2, Compton J. Tucker1, K. Tull1, A. Uhl1, J. Vloet2, P. Walpole2, P. Walpole1, S. Weidner2, D. White2, G. E. Winkert1, P.-S. Yeh1, M. Zeuch1 
TL;DR: The Fast Plasma Investigation (FPI) was developed for flight on the Magnetospheric Multiscale (MMS) mission to measure the differential directional flux of magnetospheric electrons and ions with unprecedented time resolution to resolve kinetic-scale plasma dynamics as mentioned in this paper.
Abstract: The Fast Plasma Investigation (FPI) was developed for flight on the Magnetospheric Multiscale (MMS) mission to measure the differential directional flux of magnetospheric electrons and ions with unprecedented time resolution to resolve kinetic-scale plasma dynamics. This increased resolution has been accomplished by placing four dual 180-degree top hat spectrometers for electrons and four dual 180-degree top hat spectrometers for ions around the periphery of each of four MMS spacecraft. Using electrostatic field-of-view deflection, the eight spectrometers for each species together provide 4pi-sr field-of-view with, at worst, 11.25-degree sample spacing. Energy/charge sampling is provided by swept electrostatic energy/charge selection over the range from 10 eV/q to 30000 eV/q. The eight dual spectrometers on each spacecraft are controlled and interrogated by a single block redundant Instrument Data Processing Unit, which in turn interfaces to the observatory’s Instrument Suite Central Instrument Data Processor. This paper describes the design of FPI, its ground and in-flight calibration, its operational concept, and its data products.

1,038 citations

Journal ArticleDOI
TL;DR: The Advanced Composition Explorer (ACE) as mentioned in this paper was launched in 1997 with six high-resolution spectrometers that measured the elemental, isotopic, and ionic charge-state composition of nuclei from H to Ni (1≤Z≤28) from solar wind energies (∼1 keV nucl−1) to galactic cosmic-ray energies ( ∼1.5 million km sunward of Earth).
Abstract: The Advanced Composition Explorer was launched August 25, 1997 carrying six high-resolution spectrometers that measure the elemental, isotopic, and ionic charge-state composition of nuclei from H to Ni (1≤Z≤28) from solar wind energies (∼1 keV nucl−1) to galactic cosmic-ray energies (∼500 MeV nucl−1). Data from these instruments is being used to measure and compare the elemental and isotopic composition of the solar corona, the nearby interstellar medium, and the Galaxy, and to study particle acceleration processes that occur in a wide range of environments. ACE also carries three instruments that provide the heliospheric context for ion composition studies by monitoring the state of the interplanetary medium. From its orbit about the Sun-Earth libration point ∼1.5 million km sunward of Earth, ACE also provides real-time solar wind measurements to NOAA for use in forecasting space weather. This paper provides an introduction to the ACE mission, including overviews of the scientific goals and objectives, the instrument payload, and the spacecraft and ground systems.

925 citations

Journal ArticleDOI
TL;DR: In this paper, a model was proposed to account for the observed variations in the flux and pitch angle distribution of relativistic electrons during geomagnetic storms by combining pitch angle scattering by intense EMIC waves and energy diffusion during cyclotron resonant interaction with whistler mode chorus outside the plasmasphere.
Abstract: Resonant diffusion curves for electron cyclotron resonance with field-aligned electromagnetic R mode and L mode electromagnetic ion cyclotron (EMIC) waves are constructed using a fully relativistic treatment. Analytical solutions are derived for the case of a single-ion plasma, and a numerical scheme is developed for the more realistic case of a multi-ion plasma. Diffusion curves are presented, for plasma parameters representative of the Earth's magnetosphere at locations both inside and outside the plasmapause. The results obtained indicate minimal electron energy change along the diffusion curves for resonant interaction with L mode waves. Intense storm time EMIC waves are therefore ineffective for electron stochastic acceleration, although these waves could induce rapid pitch angle scattering for ≳ 1 MeV electrons near the duskside plasmapause. In contrast, significant energy change can occur along the diffusion curves for interaction between resonant electrons and whistler (R mode) waves. The energy change is most pronounced in regions of low plasma density. This suggests that whistler mode waves could provide a viable mechanism for electron acceleration from energies near 100 keV to above 1 MeV in the region outside the plasmapause during the recovery phase of geomagnetic storms. A model is proposed to account for the observed variations in the flux and pitch angle distribution of relativistic electrons during geomagnetic storms by combining pitch angle scattering by intense EMIC waves and energy diffusion during cyclotron resonant interaction with whistler mode chorus outside the plasmasphere.

824 citations