scispace - formally typeset
Search or ask a question
Author

D I Wilson

Bio: D I Wilson is an academic researcher from Newcastle University. The author has contributed to research in topics: DiGeorge syndrome & Chromosome 22. The author has an hindex of 13, co-authored 20 publications receiving 2818 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The majority of patients were constitutionally small, with 36% of patients below the 3rd centile for either height or weight parameters, and the majority of surviving patients were developmentally normal or had only mild learning problems.
Abstract: We present clinical data on 558 patients with deletions within the DiGeorge syndrome critical region of chromosome 22q11. Twenty-eight percent of the cases where parents had been tested had inherited deletions, with a marked excess of maternally inherited deletions (maternal 61, paternal 18). Eight percent of the patients had died, over half of these within a month of birth and the majority within 6 months. All but one of the deaths were the result of congenital heart disease. Clinically significant immunological problems were very uncommon. Nine percent of patients had cleft palate and 32% had velopharyngeal insufficiency, 60% of patients were hypocalcaemic, 75% of patients had cardiac problems, and 36% of patients who had abdominal ultrasound had a renal abnormality. Sixty-two percent of surviving patients were developmentally normal or had only mild learning problems. The majority of patients were constitutionally small, with 36% of patients below the 3rd centile for either height or weight parameters.

1,087 citations

Journal ArticleDOI
TL;DR: It is proposed that DiGeorge syndrome should be seen as the severe end of the clinical spectrum embraced by the acronym CATCH 22 syndrome; Cardiac defects, Abnormal facies, Thymic hypoplasia, Cleft palate, and Hypocalcaemia resulting from 22q11 deletions.
Abstract: DiGeorge syndrome (DGS) comprises thymic hypoplasia, hypocalcaemia, outflow tract defects of the heart, and dysmorphic facies. It results in almost all cases from a deletion within chromosome 22q11. We report the clinical findings in 44 cases. We propose that DiGeorge syndrome should be seen as the severe end of the clinical spectrum embraced by the acronym CATCH 22 syndrome; Cardiac defects, Abnormal facies, Thymic hypoplasia, Cleft palate, and Hypocalcaemia resulting from 22q11 deletions.

483 citations

Journal ArticleDOI
TL;DR: Preliminary data is presented that velocardiofacial syndrome patients have similar chromosome deletions, a finding consistent with the hypothesis that these disorders represent part of a spectrum of abnormalities seen with monosomy for 22q11.

392 citations

Journal ArticleDOI
TL;DR: The conotruncal anomaly face syndrome was described in a Japanese publication in 1976 and comprises dysmorphic facial appearance and outflow tract defects of the heart and showed similarities to Shprintzen syndrome and DiGeorge syndrome.
Abstract: The conotruncal anomaly face syndrome was described in a Japanese publication in 1976 and comprises dysmorphic facial appearance and outflow tract defects of the heart. The authors subsequently noted similarities to Shprintzen syndrome and DiGeorge syndrome. Chromosome analysis in five cases did not show a deletion at high resolution, but fluorescent in situ hybridisation using probe DO832 showed a deletion within chromosome 22q11 in all cases.

255 citations

Journal ArticleDOI
TL;DR: It is proposed that deletions within band q11 of chromosome 22 are an important cause of familial heart defects in DiGeorge and Shprintzen syndromes.

152 citations


Cited by
More filters
Journal ArticleDOI
19 Nov 2015
TL;DR: The first description in the English language of the constellation of findings now known to be due to this chromosomal difference was made in the 1960s in children with DiGeorge syndrome, who presented with the clinical triad of immunodeficiency, hypoparathyroidism and congenital heart disease as mentioned in this paper.
Abstract: 22q11.2 deletion syndrome (22q11.2DS) is the most common chromosomal microdeletion disorder, estimated to result mainly from de novo non-homologous meiotic recombination events occurring in approximately 1 in every 1,000 fetuses. The first description in the English language of the constellation of findings now known to be due to this chromosomal difference was made in the 1960s in children with DiGeorge syndrome, who presented with the clinical triad of immunodeficiency, hypoparathyroidism and congenital heart disease. The syndrome is now known to have a heterogeneous presentation that includes multiple additional congenital anomalies and later-onset conditions, such as palatal, gastrointestinal and renal abnormalities, autoimmune disease, variable cognitive delays, behavioural phenotypes and psychiatric illness - all far extending the original description of DiGeorge syndrome. Management requires a multidisciplinary approach involving paediatrics, general medicine, surgery, psychiatry, psychology, interventional therapies (physical, occupational, speech, language and behavioural) and genetic counselling. Although common, lack of recognition of the condition and/or lack of familiarity with genetic testing methods, together with the wide variability of clinical presentation, delays diagnosis. Early diagnosis, preferably prenatally or neonatally, could improve outcomes, thus stressing the importance of universal screening. Equally important, 22q11.2DS has become a model for understanding rare and frequent congenital anomalies, medical conditions, psychiatric and developmental disorders, and may provide a platform to better understand these disorders while affording opportunities for translational strategies across the lifespan for both patients with 22q11.2DS and those with these associated features in the general population.

1,850 citations

Journal ArticleDOI
TL;DR: The superfamily of proteins containing C‐type lectin‐like domains (CTLDs) is a large group of extracellular Metazoan proteins with diverse functions that have evolved to specifically recognize protein, lipid and inorganic ligands, including the vertebrate clade‐specific snake venoms, and fish antifreeze and bird egg‐shell proteins.
Abstract: The superfamily of proteins containing C-type lectin-like domains (CTLDs) is a large group of extracellular Metazoan proteins with diverse functions. The CTLD structure has a characteristic double-loop ('loop-in-a-loop') stabilized by two highly conserved disulfide bridges located at the bases of the loops, as well as a set of conserved hydrophobic and polar interactions. The second loop, called the long loop region, is structurally and evolutionarily flexible, and is involved in Ca2+-dependent carbohydrate binding and interaction with other ligands. This loop is completely absent in a subset of CTLDs, which we refer to as compact CTLDs; these include the Link/PTR domain and bacterial CTLDs. CTLD-containing proteins (CTLDcps) were originally classified into seven groups based on their overall domain structure. Analyses of the superfamily representation in several completely sequenced genomes have added 10 new groups to the classification, and shown that it is applicable only to vertebrate CTLDcps; despite the abundance of CTLDcps in the invertebrate genomes studied, the domain architectures of these proteins do not match those of the vertebrate groups. Ca2+-dependent carbohydrate binding is the most common CTLD function in vertebrates, and apparently the ancestral one, as suggested by the many humoral defense CTLDcps characterized in insects and other invertebrates. However, many CTLDs have evolved to specifically recognize protein, lipid and inorganic ligands, including the vertebrate clade-specific snake venoms, and fish antifreeze and bird egg-shell proteins. Recent studies highlight the functional versatility of this protein superfamily and the CTLD scaffold, and suggest further interesting discoveries have yet to be made.

1,206 citations

Journal ArticleDOI
TL;DR: The majority of patients were constitutionally small, with 36% of patients below the 3rd centile for either height or weight parameters, and the majority of surviving patients were developmentally normal or had only mild learning problems.
Abstract: We present clinical data on 558 patients with deletions within the DiGeorge syndrome critical region of chromosome 22q11. Twenty-eight percent of the cases where parents had been tested had inherited deletions, with a marked excess of maternally inherited deletions (maternal 61, paternal 18). Eight percent of the patients had died, over half of these within a month of birth and the majority within 6 months. All but one of the deaths were the result of congenital heart disease. Clinically significant immunological problems were very uncommon. Nine percent of patients had cleft palate and 32% had velopharyngeal insufficiency, 60% of patients were hypocalcaemic, 75% of patients had cardiac problems, and 36% of patients who had abdominal ultrasound had a renal abnormality. Sixty-two percent of surviving patients were developmentally normal or had only mild learning problems. The majority of patients were constitutionally small, with 36% of patients below the 3rd centile for either height or weight parameters.

1,087 citations

Journal Article
TL;DR: 22q11.2 deletion syndrome is now known to have a heterogeneous presentation that includes multiple additional congenital anomalies and later-onset conditions, such as palatal, gastrointestinal and renal abnormalities, autoimmune disease, variable cognitive delays, behavioural phenotypes and psychiatric illness — all far extending the original description of DiGeorge syndrome.

983 citations

Journal ArticleDOI
TL;DR: The high prevalence of schizophrenia in this group suggests that chromosome 22q11 might harbor a gene or genes relevant to the etiology of schizophrenic disease in the wider population.
Abstract: Background Velo-cardio-facial syndrome (VCFS), a syndrome characterized by an increased frequency of schizophrenia and bipolar disorder, is associated with small interstitial deletions of chromosome 22q11. Methods We evaluated 50 adults with VCFS using a structured clinical interview (Schedules for Clinical Assessment in Neuropsychiatry or Psychiatric Assessment Schedule for Adults With Developmental Disability if IQ DSM-IV diagnosis. The schizophrenia phenotype in individuals with VCFS and schizophrenia was compared with a matched series of individuals with schizophrenia and without VCFS (n=12). The King's Schizotypy Questionnaire was administered to individuals with VCFS (n=41), their first-degree relatives (n=68), and a series of unrelated normal controls (n=316). All individuals with VCFS deleted for the N25 probe (n=48) were genotyped for a genetic polymorphism in the COMT gene that results in variations in enzymatic activity. Results Fifteen individuals with VCFS (30%) had a psychotic disorder, with 24% (n=12) fulfilling DSM-IV criteria for schizophrenia. In addition, 6 (12%) had major depression without psychotic features. The individuals with schizophrenia had fewer negative symptoms and a relatively later age of onset compared with those with schizophrenia and without VCFS. We found no evidence that possession of the low-activity COMT allele was associated with schizophrenia in our sample of individuals with VCFS. Conclusions The high prevalence of schizophrenia in this group suggests that chromosome 22q11 might harbor a gene or genes relevant to the etiology of schizophrenia in the wider population.

936 citations