scispace - formally typeset
Search or ask a question
Author

D. J. Lennon

Bio: D. J. Lennon is an academic researcher from Spanish National Research Council. The author has contributed to research in topics: Stars & Supergiant. The author has an hindex of 72, co-authored 357 publications receiving 15560 citations. Previous affiliations of D. J. Lennon include European Space Agency & Ludwig Maximilian University of Munich.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors simulate IPHAS (r'-Halpha,r'-i') point-source colours using a spectrophotometric library of stellar spectra and available filter transmission profiles.
Abstract: The Isaac Newton Telescope (INT) Photometric Halpha Survey of the Northern Galactic Plane (IPHAS) is a 1800-deg 2 CCD survey of the northern Milky Way spanning the latitude range -5° < b < + 5° and reaching down to r'~= 20 (10sigma). Representative observations and an assessment of point-source data from IPHAS, now underway, are presented. The data obtained are Wide Field Camera images in the Halpha narrow-band, and Sloan r' and i' broad-band filters. We simulate IPHAS (r'-Halpha,r'-i') point-source colours using a spectrophotometric library of stellar spectra and available filter transmission profiles: this defines the expected colour properties of (i) solar metallicity stars, without Halpha emission, and (ii) emission-line stars. Comparisons with observations of fields in Aquila show that the simulations of normal star colours reproduce the observations well for all spectral types earlier than M. A further comparison between colours synthesized from long-slit flux-calibrated spectra and IPHAS photometry for six objects in a Taurus field confirms the reliability of the pipeline calibration. Spectroscopic follow-up of a field in Cepheus shows that sources lying above the main stellar locus in the (r'- Halpha,r'-i') plane are confirmed to be emission-line objects with very few failures. In this same field, examples of Halpha deficit objects (a white dwarf and a carbon star) are shown to be readily distinguished by their IPHAS colours. The role IPHAS can play in studies of spatially resolved northern Galactic nebulae is discussed briefly and illustrated by a continuum-subtracted mosaic image of Shajn 147 (a supernova remnant, 3° in diameter). The final catalogue of IPHAS point sources will contain photometry on about 80 million objects. Used on its own, or in combination with near-infrared photometric catalogues, IPHAS is a major resource for the study of stellar populations making up the disc of the Milky Way. The eventual yield of new northern emission-line objects from IPHAS is likely to be an order of magnitude increase on the number already known.

469 citations

Journal ArticleDOI
TL;DR: In this paper, the multiplicity properties of the massive O-type star population were analyzed using multi-epoch spectroscopy and variability analysis to identify spectroscopic binaries.
Abstract: Aims. We analyze the multiplicity properties of the massive O-type star population. With 360 O-type stars, this is the largest homogeneous sample of massive stars analyzed to date. Methods. We use multi-epoch spectroscopy and variability analysis to identify spectroscopic binaries. We also use a Monte-Carlo method to correct for observational biases. Results. We observe a spectroscopic binary fraction of 0.35\pm0.03, which corresponds to the fraction of objects displaying statistically significant radial velocity variations with an amplitude of at least 20km/s. We compute the intrinsic binary fraction to be 0.51\pm0.04. We adopt power-laws to describe the intrinsic period and mass-ratio distributions: f_P ~ (log P)^\pi\ (with 0.15 7.8', i.e. approx117 pc) and among the O9.7 I/II objects are however significantly lower than expected from statistical fluctuations. Conclusions. Using simple evolutionary considerations, we estimate that over 50% of the current O star population in 30 Dor will exchange mass with its companion within a binary system. This shows that binary interaction is greatly affecting the evolution and fate of massive stars, and must be taken into account to correctly interpret unresolved populations of massive stars.

457 citations

Journal ArticleDOI
TL;DR: In this article, the authors study the convection zones in the outer envelope of hot massive stars which are caused by opacity peaks associated with iron and helium ionization and determine the occurrence and properties of these convection regions as function of the stellar parameters.
Abstract: Context. We study the convection zones in the outer envelope of hot massive stars which are caused by opacity peaks associated with iron and helium ionization. Aims. We determine the occurrence and properties of these convection zones as function of the stellar parameters. We then confront our results with observations of OB stars. Methods. A stellar evolution code is used to compute a grid of massive star models at different metallicities. In these models, the mixing length theory is used to characterize the envelope convection zones. Results. We find the iron convection zone (FeCZ) to be more prominent fo r lower surface gravity, higher luminosity and higher initi al metallicity. It is absent for luminosities below about 10 3.2 L⊙, 10 3.9 L⊙, and 10 4.2 L⊙ for the Galaxy, LMC and SMC, respectively. We map the strength of the FeCZ on the Hertzsprung-Russell diagram for three metallicities, and compare this with the occurrence of observational phenomena in O stars: microturbulence, non-radial pulsations, wind clumping, and line profile variabil ity. Conclusions. The confirmation of all three trends for the FeCZ as function o f stellar parameters by empirical microturbulent velociti es argues for a physical connection between sub-photospheric convective motions and small scale stochastic velocities i n the photosphere of O- and B-type stars. We further suggest that clumping in the inner parts of the winds of OB stars could be caused by the same mechanism, and that magnetic fields produced in the FeCZ coul d appear at the surface of OB stars as diagnosed by discrete absorption components in ultraviolet absorption lines.

359 citations

Journal ArticleDOI
TL;DR: In this paper, a comprehensive study of the observational dependence of the mass-loss rate in stationary stellar winds of hot massive stars on the metal content of their atmospheres is presented, and critical assessment is given of state-of-the-art mass loss determinations of OB stars in these two satellite systems and the Milky-Way.
Abstract: We present a comprehensive study of the observational dependence of the mass-loss rate in stationary stellar winds of hot massive stars on the metal content of their atmospheres. The metal content of stars in the Magellanic Clouds is discussed, and a critical assessment is given of state-of-the-art mass-loss determinations of OB stars in these two satellite systems and the Milky-Way. Assuming a powerlaw dependence of mass loss on metal content, u M ∝ Z m , and adopting a theoretical relation between the terminal flow velocity and metal content, v∞ ∝ Z 0.13 (Leitherer et al. 1992, ApJ, 401, 596), we find m = 0.83 ± 0.16 for non-clumped outflows from an analysis of the wind momentum luminosity relation (WLR) for stars more luminous than 10 5.2 L� . Within the errors, this result is in agreement with the prediction m = 0.69 ± 0.10 by Vink et al. (2001, A&A, 369, 574). Absolute empirical values for the mass loss, based on Hα and ultraviolet (UV) wind lines, are found to be a factor of two higher than predictions in this high luminosity regime. If this difference is attributed to inhomogeneities in the wind, and this clumping does not impact the predictions, this would imply that luminous O and early-B stars have clumping factors in their Hα and UV line forming regions of about a factor of four. For lower luminosity stars, the winds are so weak that their strengths can generally no longer be derived from optical spectral lines (essentially Hα) and one must currently rely on the analysis of UV lines. We confirm that in this low-luminosity domain the observed Galactic WLR is found to be much steeper than expected from theory (although the specific sample is rather small), leading to a discrepancy between UV mass-loss rates and the predictions by a factor 100 at luminosities of L ∼ 10 4.75 L� , the origin of which is unknown. We emphasize that even if the current mass-loss rates of hot luminous stars would turn out to be overestimated as a result of wind clumping, but the degree of clumping would be rather independent of metallicity, the scalings derived in this study are expected to remain correct.

354 citations

Journal ArticleDOI
TL;DR: In this paper, the physical and wind properties, plus CNO chemical abundances, of early B supergiants were analyzed using non-LTE, line blanketed, extended model atmospheres.
Abstract: We present optical studies of the physical and wind properties, plus CNO chemical abundances, of 25 09.5-B3 Galactic supergiants. We employ non-LTE, line blanketed, extended model atmospheres, which provide a modest downward revision in the effective temperature scale of early B supergiants of up to 1-2 kK relative to previous non-blanketed results. The so-called bistability jump at Bl (T eff ∼ 21 kK) from Lamers et al. is rather a more gradual trend (with large scatter) from v∞ /v esc ∼ 3.4 for B0-0.5 supergiants above 24 kK to v∞/v esc ∼ 2.5 for B0.7-1 supergiants with 20 kK ≤T ew ≤ 24 kK, and v∞/v esc ∼ 1.9 for B1.5-3 supergiants below 20 kK. This, in part, explains the break in observed UV spectral characteristics between B0.5 and B0.7 subtypes as discussed by Walborn et al. We compare derived (homogeneous) wind densities with recent results for Magellanic Cloud B supergiants and generally confirm theoretical expectations for stronger winds amongst Galactic supergiants. However, winds are substantially weaker than predictions from current radiatively driven wind theory, especially at midB subtypes, a problem which is exacerbated if winds are already clumped in the Ha line forming region. In general, CNO elemental abundances reveal strongly processed material at the surface of Galactic B supergiants, with mean N/C and N/O abundances 10 and 5 times higher than the Solar value, respectively, with HD 2905 (BC0.7 Ia) indicating the lowest degree of processing in our sample, and HD 152236 (B1.5 Ia + ) the highest.

307 citations


Cited by
More filters
Journal Article
TL;DR: The first direct detection of gravitational waves and the first observation of a binary black hole merger were reported in this paper, with a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ.
Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160) Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

4,375 citations

Journal ArticleDOI
TL;DR: Modules for Experiments in Stellar Astrophysics (MESA) as discussed by the authors is an open source software package for modeling the evolution of stellar structures and composition. But it is not suitable for large-scale systems such as supernovae.
Abstract: We substantially update the capabilities of the open source software package Modules for Experiments in Stellar Astrophysics (MESA), and its one-dimensional stellar evolution module, MESA star. Improvements in MESA star's ability to model the evolution of giant planets now extends its applicability down to masses as low as one-tenth that of Jupiter. The dramatic improvement in asteroseismology enabled by the space-based Kepler and CoRoT missions motivates our full coupling of the ADIPLS adiabatic pulsation code with MESA star. This also motivates a numerical recasting of the Ledoux criterion that is more easily implemented when many nuclei are present at non-negligible abundances. This impacts the way in which MESA star calculates semi-convective and thermohaline mixing. We exhibit the evolution of 3-8 M ? stars through the end of core He burning, the onset of He thermal pulses, and arrival on the white dwarf cooling sequence. We implement diffusion of angular momentum and chemical abundances that enable calculations of rotating-star models, which we compare thoroughly with earlier work. We introduce a new treatment of radiation-dominated envelopes that allows the uninterrupted evolution of massive stars to core collapse. This enables the generation of new sets of supernovae, long gamma-ray burst, and pair-instability progenitor models. We substantially modify the way in which MESA star solves the fully coupled stellar structure and composition equations, and we show how this has improved the scaling of MESA's calculational speed on multi-core processors. Updates to the modules for equation of state, opacity, nuclear reaction rates, and atmospheric boundary conditions are also provided. We describe the MESA Software Development Kit that packages all the required components needed to form a unified, maintained, and well-validated build environment for MESA. We also highlight a few tools developed by the community for rapid visualization of MESA star results.

2,761 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe version 90 (C90) of the code, paying particular attention to changes in the atomic database and numerical methods that have affected predictions since the last publicly available version, C84.
Abstract: CLOUDY is a large‐scale spectral synthesis code designed to simulate fully physical conditions within an astronomical plasma and then predict the emitted spectrum. Here we describe version 90 (C90) of the code, paying particular attention to changes in the atomic database and numerical methods that have affected predictions since the last publicly available version, C84. The computational methods and uncertainties are outlined together with the direction future development will take. The code is freely available and is widely used in the analysis and interpretation of emission‐line spectra. Web access to the Fortran source for CLOUDY, its documentation Hazy, and an independent electronic form of the atomic database is also described.

2,571 citations

Journal ArticleDOI
10 Mar 2005-Nature
TL;DR: It is demonstrated that the use of an appropriate hydroxyl-free gate dielectric—such as a divinyltetramethylsiloxane-bis(benzocyclobutene) derivative (BCB; ref. 6)—can yield n-channel FET conduction in most conjugated polymers, revealing that electrons are considerably more mobile in these materials than previously thought.
Abstract: Organic semiconductors have been the subject of active research for over a decade now, with applications emerging in light-emitting displays and printable electronic circuits. One characteristic feature of these materials is the strong trapping of electrons but not holes1: organic field-effect transistors (FETs) typically show p-type, but not n-type, conduction even with the appropriate low-work-function electrodes, except for a few special high-electron-affinity2,3,4 or low-bandgap5 organic semiconductors. Here we demonstrate that the use of an appropriate hydroxyl-free gate dielectric—such as a divinyltetramethylsiloxane-bis(benzocyclobutene) derivative (BCB; ref. 6)—can yield n-channel FET conduction in most conjugated polymers. The FET electron mobilities thus obtained reveal that electrons are considerably more mobile in these materials than previously thought. Electron mobilities of the order of 10-3 to 10-2 cm2 V-1 s-1 have been measured in a number of polyfluorene copolymers and in a dialkyl-substituted poly(p-phenylenevinylene), all in the unaligned state. We further show that the reason why n-type behaviour has previously been so elusive is the trapping of electrons at the semiconductor–dielectric interface by hydroxyl groups, present in the form of silanols in the case of the commonly used SiO2 dielectric. These findings should therefore open up new opportunities for organic complementary metal-oxide semiconductor (CMOS) circuits, in which both p-type and n-type behaviours are harnessed.

2,191 citations

Journal ArticleDOI
TL;DR: In this paper, a set of models for solar metallicity, where the effects of rotation are accounted for in a homogeneous way, is presented, and a grid of 48 different stellar evolutionary tracks, both rotating and non-rotating, at Z ǫ = 0.014, spanning a wide mass range from 0.8 to 120 m ⊙.
Abstract: Aims. Many topical astrophysical research areas, such as the properties of planet host stars, the nature of the progenitors of different types of supernovae and gamma ray bursts, and the evolution of galaxies, require complete and homogeneous sets of stellar models at different metallicities in order to be studied during the whole of cosmic history. We present here a first set of models for solar metallicity, where the effects of rotation are accounted for in a homogeneous way.Methods. We computed a grid of 48 different stellar evolutionary tracks, both rotating and non-rotating, at Z = 0.014, spanning a wide mass range from 0.8 to 120 M ⊙ . For each of the stellar masses considered, electronic tables provide data for 400 stages along the evolutionary track and at each stage, a set of 43 physical data are given. These grids thus provide an extensive and detailed data basis for comparisons with the observations. The rotating models start on the zero-age main sequence (ZAMS) with a rotation rate υ ini /υ crit = 0.4. The evolution is computed until the end of the central carbon-burning phase, the early asymptotic giant branch (AGB) phase, or the core helium-flash for, respectively, the massive, intermediate, and both low and very low mass stars. The initial abundances are those deduced by Asplund and collaborators, which best fit the observed abundances of massive stars in the solar neighbourhood. We update both the opacities and nuclear reaction rates, and introduce new prescriptions for the mass-loss rates as stars approach the Eddington and/or the critical velocity. We account for both atomic diffusion and magnetic braking in our low-mass star models.Results. The present rotating models provide a good description of the average evolution of non-interacting stars. In particular, they reproduce the observed main-sequence width, the positions of the red giant and supergiant stars in the Hertzsprung-Russell (HR) diagram, the observed surface compositions and rotational velocities. Very interestingly, the enhancement of the mass loss during the red-supergiant stage, when the luminosity becomes supra-Eddington in some outer layers, help models above 15−20 M ⊙ to lose a significant part of their hydrogen envelope and evolve back into the blue part of the HR diagram. This result has interesting consequences for the blue to red supergiant ratio, the minimum mass for stars to become Wolf-Rayet stars, and the maximum initial mass of stars that explode as type II−P supernovae.

1,654 citations