scispace - formally typeset
Search or ask a question
Author

D. J. Taylor

Bio: D. J. Taylor is an academic researcher from University of California, Berkeley. The author has contributed to research in topics: Dark matter & WIMP. The author has an hindex of 28, co-authored 59 publications receiving 7648 citations.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
D. S. Akerib1, Henrique Araujo2, X. Bai3, A. J. Bailey2, J. Balajthy4, S. Bedikian5, Ethan Bernard5, A. Bernstein6, Alexander Bolozdynya1, A. W. Bradley1, D. Byram7, Sidney Cahn5, M. C. Carmona-Benitez8, C. Chan9, J.J. Chapman9, A. A. Chiller7, C. Chiller7, K. Clark1, T. Coffey1, A. Currie2, A. Curioni5, Steven Dazeley6, L. de Viveiros10, A. Dobi4, J. E. Y. Dobson11, E. M. Dragowsky1, E. Druszkiewicz12, B. N. Edwards5, C. H. Faham13, S. Fiorucci9, C. E. Flores14, R. J. Gaitskell9, V. M. Gehman13, C. Ghag15, K.R. Gibson1, Murdock Gilchriese13, C. R. Hall4, M. Hanhardt3, S. A. Hertel5, M. Horn5, D. Q. Huang9, M. Ihm16, R. G. Jacobsen16, L. Kastens5, K. Kazkaz6, R. Knoche4, S. Kyre8, R. L. Lander14, N. A. Larsen5, C. Lee1, David Leonard4, K. T. Lesko13, A. Lindote10, M.I. Lopes10, A. Lyashenko5, D.C. Malling9, R. L. Mannino17, Daniel McKinsey5, Dongming Mei7, J. Mock14, M. Moongweluwan12, J. A. Morad14, M. Morii18, A. St. J. Murphy11, C. Nehrkorn8, H. N. Nelson8, F. Neves10, James Nikkel5, R. A. Ott14, M. Pangilinan9, P. D. Parker5, E. K. Pease5, K. Pech1, P. Phelps1, L. Reichhart15, T. A. Shutt1, C. Silva10, W. Skulski12, C. Sofka17, V. N. Solovov10, P. Sorensen6, T.M. Stiegler17, K. O'Sullivan5, T. J. Sumner2, Robert Svoboda14, M. Sweany14, Matthew Szydagis14, D. J. Taylor, B. P. Tennyson5, D. R. Tiedt3, Mani Tripathi14, S. Uvarov14, J.R. Verbus9, N. Walsh14, R. C. Webb17, J. T. White17, D. White8, M. S. Witherell8, M. Wlasenko18, F.L.H. Wolfs12, M. Woods14, Chao Zhang7 
TL;DR: The first WIMP search data set is reported, taken during the period from April to August 2013, presenting the analysis of 85.3 live days of data, finding that the LUX data are in disagreement with low-mass W IMP signal interpretations of the results from several recent direct detection experiments.
Abstract: The Large Underground Xenon (LUX) experiment is a dual-phase xenon time-projection chamber operating at the Sanford Underground Research Facility (Lead, South Dakota). The LUX cryostat was filled for the first time in the underground laboratory in February 2013. We report results of the first WIMP search data set, taken during the period from April to August 2013, presenting the analysis of 85.3 live days of data with a fiducial volume of 118 kg. A profile-likelihood analysis technique shows our data to be consistent with the background-only hypothesis, allowing 90% confidence limits to be set on spin-independent WIMP-nucleon elastic scattering with a minimum upper limit on the cross section of 7.6 × 10(-46) cm(2) at a WIMP mass of 33 GeV/c(2). We find that the LUX data are in disagreement with low-mass WIMP signal interpretations of the results from several recent direct detection experiments.

1,962 citations

Journal ArticleDOI
D. S. Akerib1, S. Alsum2, Henrique Araujo3, X. Bai4, A. J. Bailey3, J. Balajthy5, P. Beltrame, Ethan Bernard6, A. Bernstein7, T. P. Biesiadzinski1, E. M. Boulton6, R. Bramante1, P. Brás8, D. Byram9, Sidney Cahn10, M. C. Carmona-Benitez11, C. Chan12, A.A. Chiller9, C. Chiller9, A. Currie3, J. E. Cutter13, T. J. R. Davison, A. Dobi14, J. E. Y. Dobson15, E. Druszkiewicz16, B. N. Edwards10, C. H. Faham14, S. Fiorucci12, R. J. Gaitskell12, V. M. Gehman14, C. Ghag15, K.R. Gibson1, M. G. D. Gilchriese14, C. R. Hall5, M. Hanhardt4, S. J. Haselschwardt11, S. A. Hertel6, D. P. Hogan6, M. Horn6, D. Q. Huang12, C. M. Ignarra17, M. Ihm6, R.G. Jacobsen6, W. Ji1, K. Kamdin6, K. Kazkaz7, D. Khaitan16, R. Knoche5, N.A. Larsen10, C. Lee1, B. G. Lenardo7, K. T. Lesko14, A. Lindote8, M.I. Lopes8, A. Manalaysay13, R. L. Mannino18, M. F. Marzioni, Daniel McKinsey6, D. M. Mei9, J. Mock19, M. Moongweluwan16, J. A. Morad13, A. St. J. Murphy20, C. Nehrkorn11, H. N. Nelson11, F. Neves8, K. O’Sullivan6, K. C. Oliver-Mallory6, K. J. Palladino17, E. K. Pease6, P. Phelps1, L. Reichhart15, C. Rhyne12, S. Shaw15, T. A. Shutt1, C. Silva8, M. Solmaz11, V. N. Solovov8, P. Sorensen14, S. Stephenson13, T. J. Sumner3, Matthew Szydagis19, D. J. Taylor, W. C. Taylor12, B. P. Tennyson10, P. A. Terman18, D. R. Tiedt4, W. H. To1, Mani Tripathi13, L. Tvrznikova6, S. Uvarov13, J.R. Verbus12, R. C. Webb18, J. T. White18, T. J. Whitis1, M. S. Witherell14, F.L.H. Wolfs16, Jilei Xu7, K. Yazdani3, Sarah Young19, Chao Zhang9 
TL;DR: This search yields no evidence of WIMP nuclear recoils and constraints on spin-independent weakly interacting massive particle (WIMP)-nucleon scattering using a 3.35×10^{4} kg day exposure of the Large Underground Xenon experiment are reported.
Abstract: We report constraints on spin-independent weakly interacting massive particle (WIMP)-nucleon scattering using a 3.35×10^{4} kg day exposure of the Large Underground Xenon (LUX) experiment. A dual-phase xenon time projection chamber with 250 kg of active mass is operated at the Sanford Underground Research Facility under Lead, South Dakota (USA). With roughly fourfold improvement in sensitivity for high WIMP masses relative to our previous results, this search yields no evidence of WIMP nuclear recoils. At a WIMP mass of 50 GeV c^{-2}, WIMP-nucleon spin-independent cross sections above 2.2×10^{-46} cm^{2} are excluded at the 90% confidence level. When combined with the previously reported LUX exposure, this exclusion strengthens to 1.1×10^{-46} cm^{2} at 50 GeV c^{-2}.

1,844 citations

Journal ArticleDOI
D. S. Akerib1, Henrique Araujo2, X. Bai3, A. J. Bailey2, J. Balajthy4, P. Beltrame5, Ethan Bernard6, A. Bernstein7, T. P. Biesiadzinski1, E. M. Boulton6, A. W. Bradley1, R. Bramante1, Sidney Cahn6, M. C. Carmona-Benitez8, C. Chan9, J.J. Chapman9, A.A. Chiller10, C. Chiller10, A. Currie2, J. E. Cutter11, T. J. R. Davison5, L. de Viveiros12, A. Dobi13, J. E. Y. Dobson14, E. Druszkiewicz15, B. N. Edwards6, C. H. Faham13, S. Fiorucci13, R. J. Gaitskell9, V. M. Gehman13, C. Ghag14, K.R. Gibson1, M. G. D. Gilchriese13, C. R. Hall4, M. Hanhardt3, S. J. Haselschwardt8, S. A. Hertel6, D. P. Hogan16, M. Horn6, D. Q. Huang9, C. M. Ignarra17, M. Ihm13, R.G. Jacobsen13, W. Ji1, K. Kazkaz7, D. Khaitan15, R. Knoche4, N.A. Larsen6, C. Lee1, B. G. Lenardo7, K. T. Lesko13, A. Lindote12, M.I. Lopes12, D.C. Malling9, A. Manalaysay11, R. L. Mannino18, M. F. Marzioni5, Daniel McKinsey6, D. M. Mei10, J. Mock19, M. Moongweluwan15, J. A. Morad11, A. St. J. Murphy5, C. Nehrkorn8, H. N. Nelson8, F. Neves12, K. O'Sullivan6, K. C. Oliver-Mallory13, R. A. Ott11, K. J. Palladino17, M. Pangilinan9, E. K. Pease6, P. Phelps1, L. Reichhart14, C. Rhyne9, S. Shaw14, T. A. Shutt1, C. Silva12, V. N. Solovov12, P. Sorensen13, S. Stephenson11, T. J. Sumner2, Matthew Szydagis19, D. J. Taylor, W. C. Taylor9, B. P. Tennyson6, P. A. Terman18, D. R. Tiedt3, W. H. To1, Mani Tripathi11, L. Tvrznikova6, S. Uvarov11, J.R. Verbus9, R. C. Webb18, J. T. White18, T. J. Whitis1, M. S. Witherell8, F.L.H. Wolfs15, K. Yazdani2, Sarah Young19, Chao Zhang10 
TL;DR: This new analysis incorporates several advances: single-photon calibration at the scintillation wavelength, improved event-reconstruction algorithms, a revised background model including events originating on the detector walls in an enlarged fiducial volume, and new calibrations from decays of an injected tritium β source and from kinematically constrained nuclear recoils down to 1.1 keV.
Abstract: We present constraints on weakly interacting massive particles (WIMP)-nucleus scattering from the 2013 data of the Large Underground Xenon dark matter experiment, including 1.4×10^{4} kg day of search exposure. This new analysis incorporates several advances: single-photon calibration at the scintillation wavelength, improved event-reconstruction algorithms, a revised background model including events originating on the detector walls in an enlarged fiducial volume, and new calibrations from decays of an injected tritium β source and from kinematically constrained nuclear recoils down to 1.1 keV. Sensitivity, especially to low-mass WIMPs, is enhanced compared to our previous results which modeled the signal only above a 3 keV minimum energy. Under standard dark matter halo assumptions and in the mass range above 4 GeV c^{-2}, these new results give the most stringent direct limits on the spin-independent WIMP-nucleon cross section. The 90% C.L. upper limit has a minimum of 0.6 zb at 33 GeV c^{-2} WIMP mass.

460 citations

Journal Article
TL;DR: In this paper, the physics program for the Deep Underground Neutrino Experiment (DUNE) at the Fermilab Long-Baseline Neurtrino Facility (LBNF) is described.
Abstract: The Physics Program for the Deep Underground Neutrino Experiment (DUNE) at the Fermilab Long-Baseline Neutrino Facility (LBNF) is described.

422 citations

Journal ArticleDOI
TL;DR: The Large Underground Xenon (LUX) detector as mentioned in this paper is a dual-phase Xenon detector with a spin independent cross-section per nucleon of 2 × 10 − 46 cm 2, equivalent to ∼ 1 event / 100 kg / month in the inner 100-kg fiducial volume (FV) of the 370-kg detector.
Abstract: The Large Underground Xenon (LUX) collaboration has designed and constructed a dual-phase xenon detector, in order to conduct a search for Weakly Interacting Massive Particles (WIMPs), a leading dark matter candidate. The goal of the LUX detector is to clearly detect (or exclude) WIMPS with a spin independent cross-section per nucleon of 2 × 10 − 46 cm 2 , equivalent to ∼ 1 event / 100 kg / month in the inner 100-kg fiducial volume (FV) of the 370-kg detector. The overall background goals are set to have 1 background events characterized as possible WIMPs in the FV in 300 days of running. This paper describes the design and construction of the LUX detector.

339 citations


Cited by
More filters
Journal ArticleDOI
Elena Aprile1, Jelle Aalbers2, F. Agostini3, M. Alfonsi4, L. Althueser5, F. D. Amaro6, M. Anthony1, F. Arneodo7, Laura Baudis8, Boris Bauermeister9, M. L. Benabderrahmane7, T. Berger10, P. A. Breur2, April S. Brown2, Ethan Brown10, S. Bruenner11, Giacomo Bruno7, Ran Budnik12, C. Capelli8, João Cardoso6, D. Cichon11, D. Coderre13, Auke-Pieter Colijn2, Jan Conrad9, Jean-Pierre Cussonneau14, M. P. Decowski2, P. de Perio1, P. Di Gangi3, A. Di Giovanni7, Sara Diglio14, A. Elykov13, G. Eurin11, J. Fei15, A. D. Ferella9, A. Fieguth5, W. Fulgione, A. Gallo Rosso, Michelle Galloway8, F. Gao1, M. Garbini3, C. Geis4, L. Grandi16, Z. Greene1, H. Qiu12, C. Hasterok11, E. Hogenbirk2, J. Howlett1, R. Itay12, F. Joerg11, B. Kaminsky13, Shingo Kazama8, A. Kish8, G. Koltman12, H. Landsman12, R. F. Lang17, L. Levinson12, Qing Lin1, Sebastian Lindemann13, Manfred Lindner11, F. Lombardi15, J. A. M. Lopes6, J. Mahlstedt9, A. Manfredini12, T. Marrodán Undagoitia11, Julien Masbou14, D. Masson17, M. Messina7, K. Micheneau14, Kate C. Miller16, A. Molinario, K. Morå9, M. Murra5, J. Naganoma18, Kaixuan Ni15, Uwe Oberlack4, Bart Pelssers9, F. Piastra8, J. Pienaar16, V. Pizzella11, Guillaume Plante1, R. Podviianiuk, N. Priel12, D. Ramírez García13, L. Rauch11, S. Reichard8, C. Reuter17, B. Riedel16, A. Rizzo1, A. Rocchetti13, N. Rupp11, J.M.F. dos Santos6, Gabriella Sartorelli3, M. Scheibelhut4, S. Schindler4, J. Schreiner11, D. Schulte5, Marc Schumann13, L. Scotto Lavina19, M. Selvi3, P. Shagin18, E. Shockley16, Manuel Gameiro da Silva6, H. Simgen11, Dominique Thers14, F. Toschi13, F. Toschi3, Gian Carlo Trinchero, C. Tunnell16, N. Upole16, M. Vargas5, O. Wack11, Hongwei Wang20, Zirui Wang, Yuehuan Wei15, Ch. Weinheimer5, C. Wittweg5, J. Wulf8, J. Ye15, Yanxi Zhang1, T. Zhu1 
TL;DR: In this article, a search for weakly interacting massive particles (WIMPs) using 278.8 days of data collected with the XENON1T experiment at LNGS is reported.
Abstract: We report on a search for weakly interacting massive particles (WIMPs) using 278.8 days of data collected with the XENON1T experiment at LNGS. XENON1T utilizes a liquid xenon time projection chamber with a fiducial mass of (1.30±0.01) ton, resulting in a 1.0 ton yr exposure. The energy region of interest, [1.4,10.6] keVee ([4.9,40.9] keVnr), exhibits an ultralow electron recoil background rate of [82-3+5(syst)±3(stat)] events/(ton yr keVee). No significant excess over background is found, and a profile likelihood analysis parametrized in spatial and energy dimensions excludes new parameter space for the WIMP-nucleon spin-independent elastic scatter cross section for WIMP masses above 6 GeV/c2, with a minimum of 4.1×10-47 cm2 at 30 GeV/c2 and a 90% confidence level.

1,808 citations

Journal ArticleDOI
Elena Aprile1, Jelle Aalbers2, F. Agostini, M. Alfonsi3, F. D. Amaro4, M. Anthony1, F. Arneodo5, P. Barrow6, Laura Baudis6, Boris Bauermeister7, M. L. Benabderrahmane5, T. Berger8, P. A. Breur2, April S. Brown2, Ethan Brown8, S. Bruenner9, Giacomo Bruno, Ran Budnik10, L. Bütikofer11, J. Calvén7, João Cardoso4, M. Cervantes12, D. Cichon9, D. Coderre11, Auke-Pieter Colijn2, Jan Conrad7, Jean-Pierre Cussonneau13, M. P. Decowski2, P. de Perio1, P. Di Gangi14, A. Di Giovanni5, Sara Diglio13, G. Eurin9, J. Fei15, A. D. Ferella7, A. Fieguth16, W. Fulgione, A. Gallo Rosso, Michelle Galloway6, F. Gao1, M. Garbini14, Robert Gardner17, C. Geis3, Luke Goetzke1, L. Grandi17, Z. Greene1, C. Grignon3, C. Hasterok9, E. Hogenbirk2, J. Howlett1, R. Itay10, B. Kaminsky11, Shingo Kazama6, G. Kessler6, A. Kish6, H. Landsman10, R. F. Lang12, D. Lellouch10, L. Levinson10, Qing Lin1, Sebastian Lindemann9, Manfred Lindner9, F. Lombardi15, J. A. M. Lopes4, A. Manfredini10, I. Mariș5, T. Marrodán Undagoitia9, Julien Masbou13, F. V. Massoli14, D. Masson12, D. Mayani6, M. Messina1, K. Micheneau13, A. Molinario, K. Morâ7, M. Murra16, J. Naganoma18, Kaixuan Ni15, Uwe Oberlack3, P. Pakarha6, Bart Pelssers7, R. Persiani13, F. Piastra6, J. Pienaar12, V. Pizzella9, M.-C. Piro8, Guillaume Plante1, N. Priel10, L. Rauch9, S. Reichard6, C. Reuter12, B. Riedel17, A. Rizzo1, S. Rosendahl16, N. Rupp9, R. Saldanha17, J.M.F. dos Santos4, Gabriella Sartorelli14, M. Scheibelhut3, S. Schindler3, J. Schreiner9, Marc Schumann11, L. Scotto Lavina19, M. Selvi14, P. Shagin18, E. Shockley17, Manuel Gameiro da Silva4, H. Simgen9, M. V. Sivers11, A. Stein20, S. Thapa17, Dominique Thers13, A. Tiseni2, Gian Carlo Trinchero, C. Tunnell17, M. Vargas16, N. Upole17, Hui Wang20, Zirui Wang, Yuehuan Wei6, Ch. Weinheimer16, J. Wulf6, J. Ye15, Yanxi Zhang1, T. Zhu1 
TL;DR: The first dark matter search results from XENON1T, a ∼2000-kg-target-mass dual-phase (liquid-gas) xenon time projection chamber in operation at the Laboratori Nazionali del Gran Sasso in Italy, are reported and a profile likelihood analysis shows that the data are consistent with the background-only hypothesis.
Abstract: We report the first dark matter search results from XENON1T, a ∼2000-kg-target-mass dual-phase (liquid-gas) xenon time projection chamber in operation at the Laboratori Nazionali del Gran Sasso in Italy and the first ton-scale detector of this kind The blinded search used 342 live days of data acquired between November 2016 and January 2017 Inside the (1042±12)-kg fiducial mass and in the [5,40] keVnr energy range of interest for weakly interacting massive particle (WIMP) dark matter searches, the electronic recoil background was (193±025)×10-4 events/(kg×day×keVee), the lowest ever achieved in such a dark matter detector A profile likelihood analysis shows that the data are consistent with the background-only hypothesis We derive the most stringent exclusion limits on the spin-independent WIMP-nucleon interaction cross section for WIMP masses above 10 GeV/c2, with a minimum of 77×10-47 cm2 for 35-GeV/c2 WIMPs at 90% CL

1,061 citations

Journal ArticleDOI
Sergey Alekhin, Wolfgang Altmannshofer1, Takehiko Asaka2, Brian Batell3, Fedor Bezrukov4, Kyrylo Bondarenko5, Alexey Boyarsky5, Ki-Young Choi6, Cristóbal Corral7, Nathaniel Craig8, David Curtin9, Sacha Davidson10, Sacha Davidson11, André de Gouvêa12, Stefano Dell'Oro, Patrick deNiverville13, P. S. Bhupal Dev14, Herbi K. Dreiner15, Marco Drewes16, Shintaro Eijima17, Rouven Essig18, Anthony Fradette13, Björn Garbrecht16, Belen Gavela19, Gian F. Giudice3, Mark D. Goodsell20, Mark D. Goodsell21, Dmitry Gorbunov22, Stefania Gori1, Christophe Grojean23, Alberto Guffanti24, Thomas Hambye25, Steen Honoré Hansen24, Juan Carlos Helo26, Juan Carlos Helo7, Pilar Hernández27, Alejandro Ibarra16, Artem Ivashko28, Artem Ivashko5, Eder Izaguirre1, Joerg Jaeckel29, Yu Seon Jeong30, Felix Kahlhoefer, Yonatan Kahn31, Andrey Katz3, Andrey Katz32, Andrey Katz33, Choong Sun Kim30, Sergey Kovalenko7, Gordan Krnjaic1, Valery E. Lyubovitskij34, Valery E. Lyubovitskij35, Valery E. Lyubovitskij36, Simone Marcocci, Matthew McCullough3, David McKeen37, Guenakh Mitselmakher38, Sven Moch39, Rabindra N. Mohapatra9, David E. Morrissey40, Maksym Ovchynnikov28, Emmanuel A. Paschos, Apostolos Pilaftsis14, Maxim Pospelov13, Maxim Pospelov1, Mary Hall Reno41, Andreas Ringwald, Adam Ritz13, Leszek Roszkowski, Valery Rubakov, Oleg Ruchayskiy24, Oleg Ruchayskiy17, Ingo Schienbein42, Daniel Schmeier15, Kai Schmidt-Hoberg, Pedro Schwaller3, Goran Senjanovic43, Osamu Seto44, Mikhail Shaposhnikov17, Lesya Shchutska38, J. Shelton45, Robert Shrock18, Brian Shuve1, Michael Spannowsky46, Andrew Spray47, Florian Staub3, Daniel Stolarski3, Matt Strassler32, Vladimir Tello, Francesco Tramontano48, Anurag Tripathi, Sean Tulin49, Francesco Vissani, Martin Wolfgang Winkler15, Kathryn M. Zurek50, Kathryn M. Zurek51 
Perimeter Institute for Theoretical Physics1, Niigata University2, CERN3, University of Connecticut4, Leiden University5, Korea Astronomy and Space Science Institute6, Federico Santa María Technical University7, University of California, Santa Barbara8, University of Maryland, College Park9, Claude Bernard University Lyon 110, University of Lyon11, Northwestern University12, University of Victoria13, University of Manchester14, University of Bonn15, Technische Universität München16, École Polytechnique Fédérale de Lausanne17, Stony Brook University18, Autonomous University of Madrid19, Centre national de la recherche scientifique20, University of Paris21, Moscow Institute of Physics and Technology22, Autonomous University of Barcelona23, University of Copenhagen24, Université libre de Bruxelles25, University of La Serena26, University of Valencia27, Taras Shevchenko National University of Kyiv28, Heidelberg University29, Yonsei University30, Princeton University31, Harvard University32, University of Geneva33, Tomsk Polytechnic University34, Tomsk State University35, University of Tübingen36, University of Washington37, University of Florida38, University of Hamburg39, TRIUMF40, University of Iowa41, University of Grenoble42, International Centre for Theoretical Physics43, Hokkai Gakuen University44, University of Illinois at Urbana–Champaign45, Durham University46, University of Melbourne47, University of Naples Federico II48, York University49, Lawrence Berkeley National Laboratory50, University of California, Berkeley51
TL;DR: It is demonstrated that the SHiP experiment has a unique potential to discover new physics and can directly probe a number of solutions of beyond the standard model puzzles, such as neutrino masses, baryon asymmetry of the Universe, dark matter, and inflation.
Abstract: This paper describes the physics case for a new fixed target facility at CERN SPS. The SHiP (search for hidden particles) experiment is intended to hunt for new physics in the largely unexplored domain of very weakly interacting particles with masses below the Fermi scale, inaccessible to the LHC experiments, and to study tau neutrino physics. The same proton beam setup can be used later to look for decays of tau-leptons with lepton flavour number non-conservation, $\tau \to 3\mu $ and to search for weakly-interacting sub-GeV dark matter candidates. We discuss the evidence for physics beyond the standard model and describe interactions between new particles and four different portals—scalars, vectors, fermions or axion-like particles. We discuss motivations for different models, manifesting themselves via these interactions, and how they can be probed with the SHiP experiment and present several case studies. The prospects to search for relatively light SUSY and composite particles at SHiP are also discussed. We demonstrate that the SHiP experiment has a unique potential to discover new physics and can directly probe a number of solutions of beyond the standard model puzzles, such as neutrino masses, baryon asymmetry of the Universe, dark matter, and inflation.

842 citations