scispace - formally typeset
Search or ask a question
Author

D. K. Misemer

Bio: D. K. Misemer is an academic researcher from Stanford University. The author has contributed to research in topics: Absorption edge & Electron shell. The author has an hindex of 3, co-authored 3 publications receiving 440 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors reported the results of multiple scattered wave SCF X-alpha calculations of the one-electron cross section for K-shell photoabsorption in the molecular complexes MoO4−−, CrO4+−, and MoS4−+−.
Abstract: We report the results of multiple scattered wave SCF X‐alpha calculations of the one‐electron cross section for K‐shell photoabsorption in the molecular complexes MoO4−−, CrO4−−, and MoS4−−. We show that the method can successfully account for energy separations and relative cross sections of spectral features both below and above the K‐shell ionization threshold. Furthermore, we show: (a) that the first fairly intense peak on the low energy side of the rising edge for molybdate and chromate is due to a dipole allowed transition to a bound antibonding state of mainly nd character on the metal ion; this transition is possible because of the mixing with the ligand p orbitals having the proper T2 symmetry induced by the tetrahedral molecular potential; (b) the shoulder on the rising absorption edge can be explained by the beginning of the steplike continuum absorption when convolved with a Lorentzian function of frequency to imitate lifetime and monochromator broadening: (c) the main absorption peak is due t...

255 citations

Journal ArticleDOI
TL;DR: In this article, self-consistent multiple scattered wave formation was used to calculate the theoretical L-absorption edges of hydrated and unhydrated erbium trichloride in both bound state and continuum regions, in order to investigate the white line behavior.

18 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors review the development of extended x-ray absorption fine structure (EXAFS) within the last decade and discuss selected examples of applications of EXAFS chosen to illustrate both the strength and limitations of this structural tool.
Abstract: The authors review the development of extended x-ray absorption fine structure (EXAFS) within the last decade. Advances in experimental techniques have been largely stimulated by the availability of synchrotron radiation. The theory of EXAFS has also matured to the point where quantitative comparison with experiments can be made. The authors review in some detail the analysis of EXAFS data, starting from the treatment of raw data to the extraction of distances and amplitude information, and they also discuss selected examples of applications of EXAFS chosen to illustrate both the strength and limitations of EXAFS as a structural tool.

1,507 citations

Journal ArticleDOI
TL;DR: It is described how approximations can be replaced by efficient ab initio models including a many-pole model of the self-energy, inelastic losses and multiple-electron excitations; a linear response approach for the core hole; and a Lanczos approach for Debye-Waller effects.
Abstract: We briefly review our implementation of the real-space Green's function (RSGF) approach for calculations of X-ray spectra, focusing on recently developed parameter free models for dominant many-body effects. Although the RSGF approach has been widely used both for near edge (XANES) and extended (EXAFS) ranges, previous implementations relied on semi-phenomenological methods, e.g., the plasmon-pole model for the self-energy, the final-state rule for screened core hole effects, and the correlated Debye model for vibrational damping. Here we describe how these approximations can be replaced by efficient ab initio models including a many-pole model of the self-energy, inelastic losses and multiple-electron excitations; a linear response approach for the core hole; and a Lanczos approach for Debye–Waller effects. We also discuss the implementation of these models and software improvements within the FEFF9 code, together with a number of examples.

950 citations

Journal ArticleDOI
TL;DR: In this article, an overview of the X-ray absorption spectra of 3D transition metals and their compounds is presented, focusing on the description of the absorption process and the various routes to interpret the results within the framework of their electronic structure.

528 citations

Journal ArticleDOI
06 Aug 1998-Planta
TL;DR: Reduction from SeO4 to SeO3 appears to be a rate-limiting step in the production of volatile Se compounds by plants, and inhibitory effects of sulfate on the uptake and volatilization of Se may be reduced substantially if Se is supplied as, or converted to, SeO 3 and/or SeMeth rather than SeO 4.
Abstract: Selenium (Se) removal from polluted waters and soils is especially complicated and highly expensive. Phytoremediation has been suggested as a low-cost, efficient technology for Se removal. Plants remove Se by uptake and accumulation in their tissues, and by volatilization into the atmosphere as a harmless gas. Unraveling the mechanisms of Se uptake and volatilization in plants may lead to ways of increasing the efficiency of the phytoremediation process. The objectives of this study were: (i) to determine the effect of different Se forms in the root substrate on the capacity of some plant species to take up and volatilize Se; (ii) to determine the chemical species of Se in different plant parts after the plants were supplied with various forms of Se; and (iii) to determine the influence of increasing sulfate levels on plant uptake, translocation, and volatilization of different Se species. Plants of broccoli (Brassica oleracea var. botrytis L.), Indian mustard (Brassica juncea L.), sugarbeet (Beta vulgaris L.) and rice (Oryza sativa L.) were grown hydroponically in growth chambers and treated for 1 week with 20 μM Se as Na2SeO4, Na2SeO3 or L-selenomethionine (SeMeth) and increasing sulfate levels. The data show that shoots of SeO4-supplied plants accumulated the greatest amount of Se, followed by those supplied with SeMeth then SeO3. In roots, the highest Se concentrations were attained when SeMeth was supplied, followed by SeO3, then SeO4. The rate of Se volatilization by plants followed the same pattern as that of Se accumulation in roots, but the differences were greater. Speciation analysis (X-ray absorption spectroscopy) showed that most of the Se taken up by SeO4-supplied plants remained unchanged, whereas plants supplied with SeO3 or SeMeth contained only SeMeth-like species. Increasing the sulfate level from 0.25 mM to 10 mM inhibited SeO3 and SeMeth uptake by 33% and 15–25%, respectively, as compared to an inhibition of 90% of SeO4 uptake. Similar results were observed with regard to sulfate effects on volatilization. We conclude that reduction from SeO4 to SeO3 appears to be a rate-limiting step in the production of volatile Se compounds by plants. Inhibitory effects of sulfate on the uptake and volatilization of Se may be reduced substantially if Se is supplied as, or converted to, SeO3 and/or SeMeth rather than SeO4.

440 citations