scispace - formally typeset
Search or ask a question
Author

D. Krishna Bhat

Bio: D. Krishna Bhat is an academic researcher from National Institute of Technology, Karnataka. The author has contributed to research in topics: Supercapacitor & Band gap. The author has an hindex of 26, co-authored 95 publications receiving 1715 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a symmetric (p/p) supercapacitor has been fabricated by making use of nanostructured zinc oxide (ZnO)-activated carbon (AC) composite electrodes for the first time.
Abstract: A symmetrical (p/p) supercapacitor has been fabricated by making use of nanostructured zinc oxide (ZnO)–activated carbon (AC) composite electrodes for the first time. The composites have been characterized by field emission scanning electron microscopy (FESEM) and X-ray diffraction analysis (XRD). Electrochemical properties of the prepared nanocomposite electrodes and the supercapacitor have been studied using cyclic voltammetry (CV) and AC impedance spectroscopy in 0.1 M Na 2 SO 4 as electrolyte. The ZnO–AC nanocomposite electrode showed a specific capacitance of 160 F/g for 1:1 composition. The specific capacitance of the electrodes decreased with increase in zinc oxide content. Galvanostatic charge-discharge measurements have been done at various current densities, namely 2, 4, 6 and 7 mA/cm 2 . It has been found that the cells have excellent electrochemical reversibility and capacitive characteristics in 0.1 M Na 2 SO 4 electrolyte. It has also been observed that the specific capacitance is constant up to 500 cycles at all current densities.

145 citations

Journal ArticleDOI
TL;DR: In this article, NiCo2O4 nanorod arrays were synthesized employing a facile low-temperature solvothermal approach, followed by post-calcination treatment.

111 citations

Journal ArticleDOI
TL;DR: In this article, the effect of co-doping of calcium and indium on the electronic structure and thermoelectric properties of SnTe has been investigated and it has been shown that the resonant levels introduced by indium and band gap opening caused by calcium, valence band convergence induced by both calcium and Indium, synergistically increases the Seebeck coefficient for a wide range of temperatures.

87 citations

Journal ArticleDOI
TL;DR: In this article, the properties of a supercapacitor based on nanocomposite electrodes of activated carbon with TiO2 nano particles synthesized by a microwave method have been determined.

82 citations

Journal ArticleDOI
01 Feb 2013-Ionics
TL;DR: In this paper, a carbon-carbon supercapacitor has been fabricated using this electrolyte, and its electrochemical characteristics and performance have been studied, and the activation energy of all samples was calculated using the Arrhenius plot.
Abstract: Biodegradable polymer electrolyte comprising the blend of chitosan (CS) and poly(ethylene glycol) (PEG) plasticized with ethylene carbonate and propylene carbonate, as host polymer, and lithium perchlorate (LiClO4), as a dopant, was prepared by solution casting technique. The ionic conductivity has been calculated using the bulk impedance obtained through impedance spectroscopy. The variation of conductivity and dielectric properties has been investigated as a function of polymer blend ratio, plasticizer content and LiClO4 concentration at temperature range of 298–343 K. The DSC thermograms show two broad peaks for CS/PEG blend and increased with increase in the LiClO4 content. The maximum conductivity has been found to be 1.1 × 10−4 S cm−1 at room temperature for 70:30 (CS/PEG) concentration. The electric modulus of the electrolyte film exhibits a long tail feature indicative of good capacitance. The activation energy of all samples was calculated using the Arrhenius plot, and it has been found to be 0.12 to 0.38 eV. A carbon–carbon supercapacitor has been fabricated using this electrolyte, and its electrochemical characteristics and performance have been studied. The supercapacitor showed a fairly good specific capacitance of 47 F g−1.

77 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The principles and methods of designing and optimizing electrolytes for ES performance and application are highlighted through a comprehensive analysis of the literature, and challenges in producing high-performing electrolytes are analyzed.
Abstract: Electrolytes have been identified as some of the most influential components in the performance of electrochemical supercapacitors (ESs), which include: electrical double-layer capacitors, pseudocapacitors and hybrid supercapacitors. This paper reviews recent progress in the research and development of ES electrolytes. The electrolytes are classified into several categories, including: aqueous, organic, ionic liquids, solid-state or quasi-solid-state, as well as redox-active electrolytes. Effects of electrolyte properties on ES performance are discussed in detail. The principles and methods of designing and optimizing electrolytes for ES performance and application are highlighted through a comprehensive analysis of the literature. Interaction among the electrolytes, electro-active materials and inactive components (current collectors, binders, and separators) is discussed. The challenges in producing high-performing electrolytes are analyzed. Several possible research directions to overcome these challenges are proposed for future efforts, with the main aim of improving ESs' energy density without sacrificing existing advantages (e.g., a high power density and a long cycle-life) (507 references).

2,480 citations

01 Nov 2000
TL;DR: In this paper, the authors compared the power density characteristics of ultracapacitors and batteries with respect to the same charge/discharge efficiency, and showed that the battery can achieve energy densities of 10 Wh/kg or higher with a power density of 1.2 kW/kg.
Abstract: The science and technology of ultracapacitors are reviewed for a number of electrode materials, including carbon, mixed metal oxides, and conducting polymers. More work has been done using microporous carbons than with the other materials and most of the commercially available devices use carbon electrodes and an organic electrolytes. The energy density of these devices is 3¯5 Wh/kg with a power density of 300¯500 W/kg for high efficiency (90¯95%) charge/discharges. Projections of future developments using carbon indicate that energy densities of 10 Wh/kg or higher are likely with power densities of 1¯2 kW/kg. A key problem in the fabrication of these advanced devices is the bonding of the thin electrodes to a current collector such the contact resistance is less than 0.1 cm2. Special attention is given in the paper to comparing the power density characteristics of ultracapacitors and batteries. The comparisons should be made at the same charge/discharge efficiency.

2,437 citations

Journal ArticleDOI
TL;DR: Recent advances in strategies for advanced metal oxide-based hybrid nanostructure design are reviewed, with the focus on the binder-free film/array electrodes that can provide larger electrochemically active surface area, faster electron transport and superior ion diffusion, thus leading to substantially improved cycling and rate performance.
Abstract: Metal oxide nanostructures are promising electrode materials for lithium-ion batteries and supercapacitors because of their high specific capacity/capacitance, typically 2-3 times higher than that of the carbon/graphite-based materials. However, their cycling stability and rate performance still can not meet the requirements of practical applications. It is therefore urgent to improve their overall device performance, which depends on not only the development of advanced electrode materials but also in a large part "how to design superior electrode architectures". In the article, we will review recent advances in strategies for advanced metal oxide-based hybrid nanostructure design, with the focus on the binder-free film/array electrodes. These binder-free electrodes, with the integration of unique merits of each component, can provide larger electrochemically active surface area, faster electron transport and superior ion diffusion, thus leading to substantially improved cycling and rate performance. Several recently emerged concepts of using ordered nanostructure arrays, synergetic core-shell structures, nanostructured current collectors, and flexible paper/textile electrodes will be highlighted, pointing out advantages and challenges where appropriate. Some future electrode design trends and directions are also discussed.

2,176 citations

Journal ArticleDOI
TL;DR: In this article, a review of the recent developments and issues concerning polyethylene oxide (PEO) based electrolytes for lithium-ion batteries is presented, including blending, modifying and making PEO derivatives.
Abstract: Poly(ethylene oxide) (PEO) based materials are widely considered as promising candidates of polymer hosts in solid-state electrolytes for high energy density secondary lithium batteries. They have several specific advantages such as high safety, easy fabrication, low cost, high energy density, good electrochemical stability, and excellent compatibility with lithium salts. However, the typical linear PEO does not meet the production requirement because of its insufficient ionic conductivity due to the high crystallinity of the ethylene oxide (EO) chains, which can restrain the ionic transition due to the stiff structure especially at low temperature. Scientists have explored different approaches to reduce the crystallinity and hence to improve the ionic conductivity of PEO-based electrolytes, including blending, modifying and making PEO derivatives. This review is focused on surveying the recent developments and issues concerning PEO-based electrolytes for lithium-ion batteries.

1,414 citations

Journal ArticleDOI
TL;DR: The state-of-the-art advancements in FSSCs are reviewed to provide new insights on mechanisms, emerging electrode materials, flexible gel electrolytes and novel cell designs.
Abstract: Flexible solid-state supercapacitors (FSSCs) are frontrunners in energy storage device technology and have attracted extensive attention owing to recent significant breakthroughs in modern wearable electronics In this study, we review the state-of-the-art advancements in FSSCs to provide new insights on mechanisms, emerging electrode materials, flexible gel electrolytes and novel cell designs The review begins with a brief introduction on the fundamental understanding of charge storage mechanisms based on the structural properties of electrode materials The next sections briefly summarise the latest progress in flexible electrodes (ie, freestanding and substrate-supported, including textile, paper, metal foil/wire and polymer-based substrates) and flexible gel electrolytes (ie, aqueous, organic, ionic liquids and redox-active gels) Subsequently, a comprehensive summary of FSSC cell designs introduces some emerging electrode materials, including MXenes, metal nitrides, metal–organic frameworks (MOFs), polyoxometalates (POMs) and black phosphorus Some potential practical applications, such as the development of piezoelectric, photo-, shape-memory, self-healing, electrochromic and integrated sensor-supercapacitors are also discussed The final section highlights current challenges and future perspectives on research in this thriving field

1,210 citations