scispace - formally typeset
Search or ask a question
Author

D. L. Galloway

Bio: D. L. Galloway is an academic researcher from ABB Ltd. The author has contributed to research in topics: Distribution transformer & Delta-wye transformer. The author has an hindex of 2, co-authored 2 publications receiving 383 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a new kind of distribution transformer is proposed for the twenty-first century, one that can be made self-regulating, oil-free, and able to correct power quality problems.
Abstract: The distribution transformer has been in use by utilities throughout the twentieth century. Until now, it has consisted of a configuration of iron or steel cores and copper/aluminum coils, with mineral oil serving as both coolant and dielectric medium. Inherent in this type of construction are regulation, significant weight, losses, environmental concerns, and power quality issues. A new kind of distribution transformer is proposed for the twenty-first century, one that can be made self-regulating, oil-free, and able to correct power quality problems. A power electronic transformer has been analyzed, simulated, prototyped, and tested. Results of this effort, as well as the novel features of this new type of transformer, are discussed herein.

337 citations

Proceedings ArticleDOI
06 Feb 2000
TL;DR: In this article, the authors describe the design and prototype construction of a novel solid state transformer, which provides control over the waveshapes and output voltage and can therefore mitigate many power quality problems.
Abstract: This paper describes the design and prototype construction of a novel solid state transformer. Replacing distribution transformers with solid state devices provides control over the waveshapes and output voltage and can therefore mitigate many power quality problems. A 10 kVA prototype was constructed to transform 7200 V single phase to 240/120 V and has been tested to one-half design voltage.

54 citations


Cited by
More filters
Journal ArticleDOI
01 Jan 2011
TL;DR: The architecture described in this paper is a roadmap for a future automated and flexible electric power distribution system that is suitable for plug-and-play of distributed renewable energy and distributed energy storage devices.
Abstract: This paper presents an architecture for a future electric power distribution system that is suitable for plug-and-play of distributed renewable energy and distributed energy storage devices. Motivated by the success of the (information) Internet, the architecture described in this paper was proposed by the NSF FREEDM Systems Center, Raleigh, NC, as a roadmap for a future automated and flexible electric power distribution system. In the envisioned “Energy Internet,” a system that enables flexible energy sharing is proposed for consumers in a residential distribution system. The key technologies required to achieve such a vision are presented in this paper as a result of the research partnership of the FREEDM Systems Center.

1,237 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a systematical technology review essential for the development and application of SST in the distribution system, including high-voltage power devices, high-power and high-frequency transformers, ac/ac converter topologies, and future research directions.
Abstract: The solid-state transformer (SST), which has been regarded as one of the 10 most emerging technologies by Massachusetts Institute of Technology (MIT) Technology Review in 2010, has gained increasing importance in the future power distribution system. This paper presents a systematical technology review essential for the development and application of SST in the distribution system. The state-of-the-art technologies of four critical areas are reviewed, including high-voltage power devices, high-power and high-frequency transformers, ac/ac converter topologies, and applications of SST in the distribution system. In addition, future research directions are presented. It is concluded that the SST is an emerging technology for the future distribution system.

897 citations

Journal ArticleDOI
TL;DR: A unique vision for the future of smart transmission grids is presented in which their major features are identified and each smart transmission grid is regarded as an integrated system that functionally consists of three interactive, smart components.
Abstract: A modern power grid needs to become smarter in order to provide an affordable, reliable, and sustainable supply of electricity. For these reasons, considerable activity has been carried out in the United States and Europe to formulate and promote a vision for the development of future smart power grids. However, the majority of these activities emphasized only the distribution grid and demand side leaving the big picture of the transmission grid in the context of smart grids unclear. This paper presents a unique vision for the future of smart transmission grids in which their major features are identified. In this vision, each smart transmission grid is regarded as an integrated system that functionally consists of three interactive, smart components, i.e., smart control centers, smart transmission networks, and smart substations. The features and functions of each of the three functional components, as well as the enabling technologies to achieve these features and functions, are discussed in detail in the paper.

894 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a voltage and power balance control for the cascaded H-Bridge converter-based solid-state transformer (SST) based on the single-phase dq model, which can balance the rectifier capacitor voltages and the real power through parallel DAB modules.
Abstract: The solid-state transformer (SST) is an interface device between ac distribution grids and dc distribution systems. The SST consists of a cascaded multilevel ac/dc rectifier stage, a dual active bridge (DAB) converter stage with high-frequency transformers to provide a regulated 400-V dc distribution, and an optional dc/ac stage that can be connected to the 400-V dc bus to provide residential 120/240 V $_{\rm ac}$ . However, due to dc-link voltage and power unbalance in the cascaded modules, the unbalanced dc-link voltages and power increase the stress of the semiconductor devices and cause overvoltage or overcurrent issues. This paper proposes a new voltage and power balance control for the cascaded H-Bridge converter-based SST. Based on the single-phase dq model, a novel voltage and the power control strategy is proposed to balance the rectifier capacitor voltages and the real power through parallel DAB modules. Furthermore, the intrinsic power constraints of the cascaded H-Bridge voltage balance control are derived and analyzed. With the proposed control methods, the dc-link voltage and the real power through each module can be balanced. The SST switching model simulation and the prototype experiments are presented to verify the performance of the proposed voltage and power balance controller.

541 citations

Journal ArticleDOI
TL;DR: In this article, a single-phase d-q vector-based common duty-ratio control method for the multilevel rectifier, and a voltage feedforward and feedback based controller for the modular DAB converter are presented.
Abstract: The solid-state transformer (SST) is one of the key elements in power electronic-based microgrid systems. The single-phase SST consists of a modular multilevel ac-dc rectifier, a modular dual active bridge (DAB) dc-dc converter with high-frequency transformers, and a dc-ac inverter stage. However, due to dc bus voltage and power unbalancing in each module, the modular SST often presents instability problems making its design difficult and causing unpredictable behavior. Moreover, the unbalanced dc-link voltages increase the stress of the semiconductor devices, and also cause high harmonic distortions of grid current, therefore, necessitating the use of a bigger ac filter. This paper presents a novel single-phase d-q vector-based common-duty-ratio control method for the multilevel rectifier, and a voltage feedforward and feedback based controller for the modular DAB converter. With the proposed control methods, the dc-link voltage and power in each module can be balanced. In addition, the low-distortion grid current, unity power factor, and bidirectional power flow can be achieved. Simulation and experimental results are presented to validate the proposed control methods.

338 citations