scispace - formally typeset
Search or ask a question
Author

D. Lorente

Bio: D. Lorente is an academic researcher from University of Valencia. The author has contributed to research in topics: Hyperspectral imaging & Random forest. The author has an hindex of 11, co-authored 17 publications receiving 948 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The different technologies available to acquire the images and their use for the non-destructive inspection of the internal and external features of these products are explained, with details of the statistical techniques most commonly used for this task.
Abstract: Hyperspectral imaging systems are starting to be used as a scientific tool for food quality assessment. A typical hyperspectral image is composed of a set of a relatively wide range of monochromatic images corresponding to continuous wavelengths that normally contain redundant information or may exhibit a high degree of correlation. In addition, computation of the classifiers used to deal with the data obtained from the images can become excessively complex and time-consuming for such high-dimensional datasets, and this makes it difficult to incorporate such systems into an industry that demands standard protocols or high-speed processes. Therefore, recent works have focused on the development of new systems based on this technology that are capable of analysing quality features that cannot be inspected using visible imaging. Many of those studies have also centred on finding new statistical techniques to reduce the hyperspectral images to multispectral ones, which are easier to implement in automatic, non-destructive systems. This article reviews recent works that use hyperspectral imaging for the inspection of fruit and vegetables. It explains the different technologies available to acquire the images and their use for the non-destructive inspection of the internal and external features of these products. Particular attention is paid to the works aimed at reducing the dimensionality of the images, with details of the statistical techniques most commonly used for this task.

444 citations

Journal ArticleDOI
TL;DR: This work proposes a methodology to select features in multi-class classification problems using the receiver operating characteristic curve, in order to detect rottenness in citrus fruits by means of hyperspectral images.
Abstract: Early automatic detection of fungal infections in post-harvest citrus fruits is especially important for the citrus industry because only a few infected fruits can spread the infection to a whole batch during operations such as storage or exportation, thus causing great economic losses. Nowadays, this detection is carried out manually by trained workers illuminating the fruit with dangerous ultraviolet lighting. The use of hyperspectral imaging systems makes it possible to advance in the development of systems capable of carrying out this detection process automatically. However, these systems present the disadvantage of generating a huge amount of data, which must be selected in order to achieve a result that is useful to the sector. This work proposes a methodology to select features in multi-class classification problems using the receiver operating characteristic curve, in order to detect rottenness in citrus fruits by means of hyperspectral images. The classifier used is a multilayer perceptron, trained with a new learning algorithm called extreme learning machine. The results are obtained using images of mandarins with the pixels labelled in five different classes: two kinds of sound skin, two kinds of decay and scars. This method yields a reduced set of features and a classification success rate of around 89%.

121 citations

Journal ArticleDOI
TL;DR: In this article, the pericarp of mangos at different stages of ripeness was evaluated based on the analysis of hyperspectral images, and a 97.9% rate was achieved on the third day after the damage had been caused using k-Nearest Neighbours and the whole spectra.

102 citations

Journal ArticleDOI
TL;DR: A data-driven method to simulate, in real-time, the biomechanical behavior of the breast tissues in some image-guided interventions such as biopsies or radiotherapy dose delivery as well as to speed up multimodal registration algorithms.

73 citations

Journal ArticleDOI
TL;DR: In this article, the feasibility of reflectance spectroscopy in the visible and near infrared (NIR) regions was evaluated for the automatic detection of the early symptoms of decay caused by Penicillium digitatum fungus in citrus fruit.

61 citations


Cited by
More filters
Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

01 Jan 1981
TL;DR: In this article, Monte Carlo techniques are used to estimate the probability of a given set of variables for a particular set of classes of data, such as conditional probability and hypergeometric probability.
Abstract: 1. Introduction 1.1 An Overview 1.2 Some Examples 1.3 A Brief History 1.4 A Chapter Summary 2. Probability 2.1 Introduction 2.2 Sample Spaces and the Algebra of Sets 2.3 The Probability Function 2.4 Conditional Probability 2.5 Independence 2.6 Combinatorics 2.7 Combinatorial Probability 2.8 Taking a Second Look at Statistics (Monte Carlo Techniques) 3. Random Variables 3.1 Introduction 3.2 Binomial and Hypergeometric Probabilities 3.3 Discrete Random Variables 3.4 Continuous Random Variables 3.5 Expected Values 3.6 The Variance 3.7 Joint Densities 3.8 Transforming and Combining Random Variables 3.9 Further Properties of the Mean and Variance 3.10 Order Statistics 3.11 Conditional Densities 3.12 Moment-Generating Functions 3.13 Taking a Second Look at Statistics (Interpreting Means) Appendix 3.A.1 MINITAB Applications 4. Special Distributions 4.1 Introduction 4.2 The Poisson Distribution 4.3 The Normal Distribution 4.4 The Geometric Distribution 4.5 The Negative Binomial Distribution 4.6 The Gamma Distribution 4.7 Taking a Second Look at Statistics (Monte Carlo Simulations) Appendix 4.A.1 MINITAB Applications Appendix 4.A.2 A Proof of the Central Limit Theorem 5. Estimation 5.1 Introduction 5.2 Estimating Parameters: The Method of Maximum Likelihood and the Method of Moments 5.3 Interval Estimation 5.4 Properties of Estimators 5.5 Minimum-Variance Estimators: The Crami?½r-Rao Lower Bound 5.6 Sufficient Estimators 5.7 Consistency 5.8 Bayesian Estimation 5.9 Taking A Second Look at Statistics (Beyond Classical Estimation) Appendix 5.A.1 MINITAB Applications 6. Hypothesis Testing 6.1 Introduction 6.2 The Decision Rule 6.3 Testing Binomial Dataâ H0: p = po 6.4 Type I and Type II Errors 6.5 A Notion of Optimality: The Generalized Likelihood Ratio 6.6 Taking a Second Look at Statistics (Statistical Significance versus â Practicalâ Significance) 7. Inferences Based on the Normal Distribution 7.1 Introduction 7.2 Comparing Y-i?½ s/ vn and Y-i?½ S/ vn 7.3 Deriving the Distribution of Y-i?½ S/ vn 7.4 Drawing Inferences About i?½ 7.5 Drawing Inferences About s2 7.6 Taking a Second Look at Statistics (Type II Error) Appendix 7.A.1 MINITAB Applications Appendix 7.A.2 Some Distribution Results for Y and S2 Appendix 7.A.3 A Proof that the One-Sample t Test is a GLRT Appendix 7.A.4 A Proof of Theorem 7.5.2 8. Types of Data: A Brief Overview 8.1 Introduction 8.2 Classifying Data 8.3 Taking a Second Look at Statistics (Samples Are Not â Validâ !) 9. Two-Sample Inferences 9.1 Introduction 9.2 Testing H0: i?½X =i?½Y 9.3 Testing H0: s2X=s2Yâ The F Test 9.4 Binomial Data: Testing H0: pX = pY 9.5 Confidence Intervals for the Two-Sample Problem 9.6 Taking a Second Look at Statistics (Choosing Samples) Appendix 9.A.1 A Derivation of the Two-Sample t Test (A Proof of Theorem 9.2.2) Appendix 9.A.2 MINITAB Applications 10. Goodness-of-Fit Tests 10.1 Introduction 10.2 The Multinomial Distribution 10.3 Goodness-of-Fit Tests: All Parameters Known 10.4 Goodness-of-Fit Tests: Parameters Unknown 10.5 Contingency Tables 10.6 Taking a Second Look at Statistics (Outliers) Appendix 10.A.1 MINITAB Applications 11. Regression 11.1 Introduction 11.2 The Method of Least Squares 11.3 The Linear Model 11.4 Covariance and Correlation 11.5 The Bivariate Normal Distribution 11.6 Taking a Second Look at Statistics (How Not to Interpret the Sample Correlation Coefficient) Appendix 11.A.1 MINITAB Applications Appendix 11.A.2 A Proof of Theorem 11.3.3 12. The Analysis of Variance 12.1 Introduction 12.2 The F Test 12.3 Multiple Comparisons: Tukeyâ s Method 12.4 Testing Subhypotheses with Contrasts 12.5 Data Transformations 12.6 Taking a Second Look at Statistics (Putting the Subject of Statistics togetherâ the Contributions of Ronald A. Fisher) Appendix 12.A.1 MINITAB Applications Appendix 12.A.2 A Proof of Theorem 12.2.2 Appendix 12.A.3 The Distribution of SSTR/(kâ 1) SSE/(nâ k)When H1 is True 13. Randomized Block Designs 13.1 Introduction 13.2 The F Test for a Randomized Block Design 13.3 The Paired t Test 13.4 Taking a Second Look at Statistics (Choosing between a Two-Sample t Test and a Paired t Test) Appendix 13.A.1 MINITAB Applications 14. Nonparametric Statistics 14.1 Introduction 14.2 The Sign Test 14.3 Wilcoxon Tests 14.4 The Kruskal-Wallis Test 14.5 The Friedman Test 14.6 Testing for Randomness 14.7 Taking a Second Look at Statistics (Comparing Parametric and Nonparametric Procedures) Appendix 14.A.1 MINITAB Applications Appendix: Statistical Tables Answers to Selected Odd-Numbered Questions Bibliography Index

524 citations

Journal ArticleDOI
TL;DR: It is evident that hyperspectral imaging can automate a variety of routine inspection tasks and is anticipated that real-time food monitoring systems with this technique can be expected to meet the requirements of the modern industrial control and sorting systems in the near future.
Abstract: In recent years, hyperspectral imaging has gained a wide recognition as a non-destructive and fast quality and safety analysis and assessment method for a wide range of food products. As the second part of this review, applications in quality and safety determination for food products are presented to illustrate the capability of this technique in the food industry for classification and grading, defect and disease detection, distribution visualization of chemical attributes, and evaluations of overall quality of meat, fish, fruits, vegetables, and other food products. The state of the art of hyperspectral imaging for each of the categories was summarized in the aspects of the investigated quality and safety attributes, the used systems (wavelength range, acquisition mode), the data analysis methods (feature extraction, multivariate calibration, variables selection), and the performance (correlation, error, visualization). With its success in different applications of food quality and safety analysis and assessment, it is evident that hyperspectral imaging can automate a variety of routine inspection tasks. Industrial relevance It is anticipated that real-time food monitoring systems with this technique can be expected to meet the requirements of the modern industrial control and sorting systems in the near future.

461 citations

01 Jan 2016
TL;DR: Kindly say, the nonlinear finite elements for continua and structures is universally compatible with any devices to read.
Abstract: nonlinear finite elements for continua and structures is available in our book collection an online access to it is set as public so you can get it instantly. Our books collection saves in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Kindly say, the nonlinear finite elements for continua and structures is universally compatible with any devices to read.

445 citations

Journal ArticleDOI
TL;DR: The different technologies available to acquire the images and their use for the non-destructive inspection of the internal and external features of these products are explained, with details of the statistical techniques most commonly used for this task.
Abstract: Hyperspectral imaging systems are starting to be used as a scientific tool for food quality assessment. A typical hyperspectral image is composed of a set of a relatively wide range of monochromatic images corresponding to continuous wavelengths that normally contain redundant information or may exhibit a high degree of correlation. In addition, computation of the classifiers used to deal with the data obtained from the images can become excessively complex and time-consuming for such high-dimensional datasets, and this makes it difficult to incorporate such systems into an industry that demands standard protocols or high-speed processes. Therefore, recent works have focused on the development of new systems based on this technology that are capable of analysing quality features that cannot be inspected using visible imaging. Many of those studies have also centred on finding new statistical techniques to reduce the hyperspectral images to multispectral ones, which are easier to implement in automatic, non-destructive systems. This article reviews recent works that use hyperspectral imaging for the inspection of fruit and vegetables. It explains the different technologies available to acquire the images and their use for the non-destructive inspection of the internal and external features of these products. Particular attention is paid to the works aimed at reducing the dimensionality of the images, with details of the statistical techniques most commonly used for this task.

444 citations