scispace - formally typeset
Search or ask a question

Showing papers by "D. M. Asner published in 2006"


Journal ArticleDOI
T. E. Coan1, Y. S. Gao1, F. Liu1, Marina Artuso2, S. Blusk2, J. Butt2, Li Jingyuan2, N. Menaa2, R. Mountain2, S. Nisar2, K. Randrianarivony2, R. Redjimi2, R. Sia2, Tomasz Skwarnicki2, Sheldon Stone2, Jing Wang2, K. Zhang2, S. E. Csorna3, G. Bonvicini4, D. Cinabro4, M. Dubrovin4, A. Lincoln4, D. M. Asner5, K. W. Edwards5, R. A. Briere6, I. C. Brock6, I. C. Brock7, Junjie Chen6, Thomas Ferguson6, G. Tatishvili6, Helmut Vogel6, M. E. Watkins6, Jonathan L. Rosner8, N. E. Adam9, J. P. Alexander9, Karl Berkelman9, D. G. Cassel9, J. E. Duboscq9, K. M. Ecklund9, R. Ehrlich9, L. Fields9, R. S. Galik9, L. K. Gibbons9, R. Gray9, S. W. Gray9, D. L. Hartill9, B. K. Heltsley9, D. Hertz9, C. D. Jones9, J. Kandaswamy9, D. L. Kreinick9, V. E. Kuznetsov9, H. Mahlke-Krüger9, T. O. Meyer9, Peter Onyisi9, Juliet Ritchie Patterson9, D. Peterson9, E. A. Phillips9, J. Pivarski9, D. Riley9, Anders Ryd9, A. J. Sadoff9, H. Schwarthoff9, Xin Shi9, S. Stroiney9, Werner Sun9, T. Wilksen9, M. Weinberger9, S. B. Athar10, Paul Avery10, L. Breva-Newell10, R. Patel10, V. Potlia10, H. Stoeck10, John Yelton10, P. Rubin11, C. Cawlfield12, B. I. Eisenstein12, I. Karliner12, Dong-Hyun Kim12, N. Lowrey12, P. Naik12, C. Sedlack12, Mats A Selen12, E. J. White12, James E Wiss12, M. R. Shepherd13, D. Z. Besson14, T. K. Pedlar15, D. Cronin-Hennessy16, K. Y. Gao16, D. T. Gong16, J. Hietala16, Yuichi Kubota16, T. Klein16, B. W. Lang16, R. Poling16, A. W. Scott16, A. Smith16, Sean A Dobbs17, Z. Metreveli17, K. K. Seth17, Amiran Tomaradze17, Peter K. Zweber17, J. A. Ernst18, Horst Severini19, S. A. Dytman20, W. Love20, V. Savinov20, O. Aquines21, Z. Li21, Alan D. Lopez21, S. Mehrabyan21, H. Mendez21, J. E. Ramirez21, G. S. Huang22, D. H. Miller22, V. Pavlunin22, B. Sanghi22, Ian Shipsey22, B. Xin22, G. S. Adams23, M. Anderson23, J. P. Cummings23, I. Danko23, J. Napolitano23, Q. He24, J. Insler24, H. Muramatsu24, C. S. Park24, E. H. Thorndike24 
TL;DR: In this paper, the CLEO detector operating at the CESR e+e- collider at 3.97-4.26 GeV was used to investigate 15 charmonium decay modes of the psi(4040), psi(4160), and Y(4260) resonances.
Abstract: Using data collected with the CLEO detector operating at the CESR e+e- collider at sqrt[s]=3.97-4.26 GeV, we investigate 15 charmonium decay modes of the psi(4040), psi(4160), and Y(4260) resonances. We confirm, at 11 sigma significance, the BABAR Y(4260)-->pi+pi- J/psi discovery, make the first observation of Y(4260)--> pi(0)pi(0) J/psi (5.1 sigma), and find the first evidence for Y(4260)-->K+K- J/psi(3.7 sigma). We measure e+e- cross sections at sqrt[s]=4.26 GeV as sigma(pi+pi- J/psi)=58(+12)(-10)+/-4 pb, sigma(pi(0)pi(0) J/psi)=23(+12)(-8)+/-1 pb, and sigma(K+K- J/psi)=9(+9)(-5)+/-1 pb, in which the uncertainties are statistical and systematic, respectively. Upper limits are placed on other decay rates from all three resonances.

166 citations


Journal ArticleDOI
TL;DR: In this paper, a method for simultaneously measuring the magnitudes and phases of these amplitude ratios and searching for mixing pairs was presented, which can be used to estimate experimental sensitivities based on a plausible charm factory data set.
Abstract: Due to the presence of quantum correlations in the $C=\ensuremath{-}1$ and $C=+1$ ${D}^{0}{\overline{D}}^{0}$ pairs produced in the reactions ${e}^{+}{e}^{\ensuremath{-}}\ensuremath{\rightarrow}{D}^{0}{\overline{D}}^{0}(n{\ensuremath{\pi}}^{0})$ and ${e}^{+}{e}^{\ensuremath{-}}\ensuremath{\rightarrow}{D}^{0}{\overline{D}}^{0}\ensuremath{\gamma}(n{\ensuremath{\pi}}^{0})$, respectively, the time-integrated ${D}^{0}{\overline{D}}^{0}$ decay rates are sensitive to interference between amplitudes for indistinguishable final states. The size of this interference is governed by the relevant amplitude ratios and can include contributions from ${D}^{0}\mathrm{\text{\ensuremath{-}}}{\overline{D}}^{0}$ mixing. We present a method for simultaneously measuring the magnitudes and phases of these amplitude ratios and searching for ${D}^{0}\mathrm{\text{\ensuremath{-}}}{\overline{D}}^{0}$ mixing. We make use of fully- and partially-reconstructed ${D}^{0}{\overline{D}}^{0}$ pairs in both $C$ eigenstates, and we estimate experimental sensitivities based on a plausible charm factory data set. Similar analyses can be applied to coherent ${K}^{0}{\overline{K}}^{0}$, ${B}^{0}{\overline{B}}^{0}$, or ${B}_{s}^{0}{\overline{B}}_{s}^{0}$ pairs.

64 citations


Journal ArticleDOI
N. E. Adam1, J. P. Alexander1, Karl Berkelman1, D. G. Cassel1, V. Crede1, J. E. Duboscq1, K. M. Ecklund1, R. Ehrlich1, L. Fields1, R. S. Galik1, L. K. Gibbons1, B. Gittelman1, R. Gray1, S. W. Gray1, D. L. Hartill1, B. K. Heltsley1, D. Hertz1, C. D. Jones1, J. Kandaswamy1, D. L. Kreinick1, V. E. Kuznetsov1, H. Mahlke-Krüger1, T. O. Meyer1, Peter Onyisi1, Juliet Ritchie Patterson1, D. Peterson1, E. A. Phillips1, J. Pivarski1, D. Riley1, Anders Ryd1, A. J. Sadoff1, H. Schwarthoff1, X. Shi1, M. R. Shepherd1, S. Stroiney1, Werner Sun1, D. Urner1, T. Wilksen1, K. M. Weaver1, M. Weinberger1, S. B. Athar2, Paul Avery2, L. Breva-Newell2, R. Patel2, V. Potlia2, H. Stoeck2, John Yelton2, P. Rubin3, C. Cawlfield4, B. I. Eisenstein4, G. D. Gollin4, I. Karliner4, Dong-Hyun Kim4, N. Lowrey4, P. Naik4, C. Sedlack4, Mats A Selen4, E. J. White4, J. Williams4, James E Wiss4, D. M. Asner5, K. W. Edwards5, D. Z. Besson6, T. K. Pedlar7, D. Cronin-Hennessy8, K. Y. Gao8, D. T. Gong8, J. Hietala8, Yuichi Kubota8, T. Klein8, B. W. Lang8, Shuwang Li8, R. Poling8, A. W. Scott8, A. Smith8, Sean A Dobbs9, Z. Metreveli9, Kamal K. Seth9, Amiran Tomaradze9, Peter K. Zweber9, J. A. Ernst10, Horst Severini11, S. A. Dytman12, W. Love12, S. Mehrabyan12, James Mueller12, V. Savinov12, Z. Li13, A. Lopez13, H. Mendez13, J. E. Ramirez13, G. S. Huang14, D. H. Miller14, V. Pavlunin14, B. Sanghi14, I. P.J. Shipsey14, G. S. Adams15, M. Anderson15, J. P. Cummings15, I. Danko15, J. Napolitano15, Q. He16, H. Muramatsu16, C. S. Park16, E. H. Thorndike16, T. E. Coan17, Y. S. Gao17, F. Liu17, Marina Artuso18, C. Boulahouache18, S. Blusk18, J. Butt18, O. Dorjkhaidav18, Li Jingyuan18, N. Menaa18, R. Mountain18, R. Nandakumar18, K. Randrianarivony18, R. Redjimi18, R. Sia18, Tomasz Skwarnicki18, Sheldon Stone18, J. C. Wang18, K. Zhang18, S. E. Csorna19, G. Bonvicini20, D. Cinabro20, M. Dubrovin20, R. A. Briere21, G. P. Chen21, Junjie Chen21, Thomas Ferguson21, G. Tatishvili21, Hans J. Vogel21, M. E. Watkins21, Jonathan L. Rosner22 
TL;DR: In this paper, the authors observe signals for the decays {psi}(3770) yielding XJ/psi from data acquired with the CLEO detector operating at the CESR e{sup +}e{sup -} collider with {radical}(s)=3773 MeV.
Abstract: We observe signals for the decays {psi}(3770){yields}XJ/{psi} from data acquired with the CLEO detector operating at the CESR e{sup +}e{sup -} collider with {radical}(s)=3773 MeV. We measure the following branching fractions B({psi}(3770){yields}XJ/{psi}) and significances: (189{+-}20{+-}20)x10{sup -5} (11.6{sigma}) for X={pi}{sup +}{pi}{sup -} (80{+-}25{+-}16)x10{sup -5} (3.4{sigma}) for X={pi}{sup 0}{pi}{sup 0}, and (87{+-}33{+-}22)x10{sup -5} (3.5{sigma}) for X={eta}, where the errors are statistical and systematic, respectively. The radiative return process e{sup +}e{sup -}{yields}{gamma}{psi}(2S) populates the same event sample and is used to measure {gamma}{sub ee}[{psi}(2S)]=(2.54{+-}0.03{+-}0.11) keV.

47 citations


Journal ArticleDOI
D. Z. Besson1, T. K. Pedlar2, D. Cronin-Hennessy3, K. Y. Gao3, D. T. Gong3, J. Hietala3, Yuichi Kubota3, T. Klein3, B. W. Lang3, R. Poling3, A. W. Scott3, A. Smith3, Sean A Dobbs4, Z. Metreveli4, Kamal K. Seth4, Amiran Tomaradze4, Peter K. Zweber4, J. A. Ernst5, K. E. Arms6, Horst Severini7, S. A. Dytman8, W. Love8, S. Mehrabyan8, James Mueller8, V. Savinov8, Z. Li9, A. Lopez9, H. Mendez9, J. E. Ramirez9, G. S. Huang10, D. H. Miller10, V. Pavlunin10, B. Sanghi10, I. P.J. Shipsey10, G. S. Adams11, M. Anderson11, J. P. Cummings11, I. Danko11, J. Napolitano11, Q. He12, H. Muramatsu12, C. S. Park12, E. H. Thorndike12, T. E. Coan13, Y. S. Gao13, F. Liu13, Marina Artuso14, C. Boulahouache14, S. Blusk14, J. Butt14, Li Jingyuan14, N. Menaa14, R. Mountain14, S. Nisar14, K. Randrianarivony14, R. Redjimi14, R. Sia14, Tomasz Skwarnicki14, Sheldon Stone14, Jing Wang14, K. Zhang14, S. E. Csorna15, G. Bonvicini16, D. Cinabro16, M. Dubrovin16, A. Lincoln16, R. A. Briere17, G. P. Chen17, Junjie Chen17, Thomas Ferguson17, G. Tatishvili17, Hans J. Vogel17, M. E. Watkins17, Jonathan L. Rosner18, N. E. Adam19, J. P. Alexander19, Karl Berkelman19, D. G. Cassel19, J. E. Duboscq19, K. M. Ecklund19, R. Ehrlich19, L. Fields19, L. K. Gibbons19, R. Gray19, S. W. Gray19, D. L. Hartill19, B. K. Heltsley19, D. Hertz19, C. D. Jones19, J. Kandaswamy19, D. L. Kreinick19, V. E. Kuznetsov19, H. Mahlke-Krüger19, T. O. Meyer19, Peter Onyisi19, Juliet Ritchie Patterson19, D. Peterson19, E. A. Phillips19, J. Pivarski19, D. Riley19, Anders Ryd19, A. J. Sadoff19, H. Schwarthoff19, X. Shi19, S. Stroiney19, Werner Sun19, T. Wilksen19, M. Weinberger19, S. B. Athar20, Paul Avery20, L. Breva-Newell20, R. Patel20, V. Potlia20, H. Stoeck20, John Yelton20, P. Rubin21, C. Cawlfield22, B. I. Eisenstein22, I. Karliner22, Dong-Hyun Kim22, N. Lowrey22, P. Naik22, C. Sedlack22, Mats A Selen22, E. J. White22, James E Wiss22, M. R. Shepherd23, D. M. Asner24, K. W. Edwards24 
TL;DR: The cross section for e+e- -->psi(3770) -->hadrons at Ec.m.=3773 MeV is measured using the CLEO detector at the CESR e+ e- collider and the observed total cross section is extracted.
Abstract: We measure the cross section for e{sup +}e{sup -}{yields}{psi}(3770){yields}hadrons at E{sub c.m.}=3773 MeV to be (6.38{+-}0.08{sub -0.30}{sup +0.41}) nb using the CLEO detector at the CESR e{sup +}e{sup -} collider. The difference between this and the e{sup +}e{sup -}{yields}{psi}(3770){yields}DD cross section at the same energy is found to be (-0.01{+-}0.08{sub -0.30}{sup +0.41}) nb. With the observed total cross section, we extract {gamma}{sub ee}({psi}(3770))=(0.204{+-}0.003{sub -0.027}{sup +0.041}) keV. Uncertainties shown are statistical and systematic, respectively.

39 citations


Journal ArticleDOI
G. S. Adams1, M. Anderson1, J. P. Cummings1, I. Danko1, J. Napolitano1, Q. He2, H. Muramatsu2, C. S. Park2, E. H. Thorndike2, T. E. Coan3, Y. S. Gao3, F. Liu3, Marina Artuso4, C. Boulahouache4, S. Blusk4, J. Butt4, O. Dorjkhaidav4, Li Jingyuan4, N. Menaa4, R. Mountain4, R. Nandakumar4, K. Randrianarivony4, R. Redjimi4, R. Sia4, Tomasz Skwarnicki4, Sheldon Stone4, J. C. Wang4, K. Zhang4, S. E. Csorna5, G. Bonvicini6, D. Cinabro6, M. Dubrovin6, A. Lincoln6, R. A. Briere7, G. P. Chen7, Junjie Chen7, Thomas Ferguson7, G. Tatishvili7, Hans J. Vogel7, M. E. Watkins7, Jonathan L. Rosner8, N. E. Adam9, J. P. Alexander9, Karl Berkelman9, D. G. Cassel9, V. Crede9, J. E. Duboscq9, K. M. Ecklund9, R. Ehrlich9, L. Fields9, R. S. Galik9, L. K. Gibbons9, B. Gittelman9, R. Gray9, S. W. Gray9, D. L. Hartill9, Brian Heltsley9, D. Hertz9, C. D. Jones9, J. Kandaswamy9, D. L. Kreinick9, V. E. Kuznetsov9, H. Mahlke-Krüger9, T. O. Meyer9, Peter Onyisi9, Juliet Ritchie Patterson9, D. Peterson9, E. A. Phillips9, J. Pivarski9, D. Riley9, Anders Ryd9, A. J. Sadoff9, H. Schwarthoff9, X. Shi9, M. R. Shepherd9, S. Stroiney9, Werner Sun9, D. Urner9, T. Wilksen9, K. M. Weaver9, M. Weinberger9, S. B. Athar10, Paul Avery10, L. Breva-Newell10, R. Patel10, V. Potlia10, H. Stoeck10, John Yelton10, P. Rubin11, C. Cawlfield12, B. I. Eisenstein12, G. D. Gollin12, I. Karliner12, Dong-Hyun Kim12, N. Lowrey12, P. Naik12, C. Sedlack12, Mats A Selen12, E. J. White12, J. Williams12, James E Wiss12, D. M. Asner13, K. W. Edwards13, D. Z. Besson14, T. K. Pedlar15, D. Cronin-Hennessy16, K. Y. Gao16, D. T. Gong16, J. Hietala16, Yuichi Kubota16, T. Klein16, B. W. Lang16, Shuwang Li16, R. Poling16, A. W. Scott16, A. Smith16, Sean A Dobbs17, Z. Metreveli17, Kamal K. Seth17, Amiran Tomaradze17, Peter K. Zweber17, J. A. Ernst18, Horst Severini19, S. A. Dytman20, W. Love20, S. Mehrabyan20, James Mueller20, V. Savinov20, Z. Li21, A. Lopez21, H. Mendez21, J. E. Ramirez21, G. S. Huang22, D. H. Miller22, V. Pavlunin22, B. Sanghi22, I. P.J. Shipsey22 
TL;DR: In this paper, a search for the decay to two-body non-D\overline{D}$ final states in the CESR collider data was described, and a suggestive suppression was seen for the expected rate.
Abstract: We describe a search for $\ensuremath{\psi}(3770)$ decay to two-body non-$D\overline{D}$ final states in ${e}^{+}{e}^{\ensuremath{-}}$ data produced by the CESR collider and analyzed with the CLEO-c detector. Vector-pseudoscalar production ${\ensuremath{\rho}}^{0}{\ensuremath{\pi}}^{0}$, ${\ensuremath{\rho}}^{+}{\ensuremath{\pi}}^{\ensuremath{-}}$, $\ensuremath{\omega}{\ensuremath{\pi}}^{0}$, $\ensuremath{\phi}{\ensuremath{\pi}}^{0}$, $\ensuremath{\rho}\ensuremath{\eta}$, $\ensuremath{\omega}\ensuremath{\eta}$, $\ensuremath{\phi}\ensuremath{\eta}$, $\ensuremath{\rho}{\ensuremath{\eta}}^{\ensuremath{'}}$, $\ensuremath{\omega}{\ensuremath{\eta}}^{\ensuremath{'}}$, $\ensuremath{\phi}{\ensuremath{\eta}}^{\ensuremath{'}}$, ${K}^{*0}\overline{{K}^{0}}$, and ${K}^{*+}{K}^{\ensuremath{-}}$ is studied along with that of ${b}_{1}\ensuremath{\pi}$ (${b}_{1}^{0}{\ensuremath{\pi}}^{0}$ and ${b}_{1}^{+}{\ensuremath{\pi}}^{\ensuremath{-}}$) and ${\ensuremath{\pi}}^{+}{\ensuremath{\pi}}^{\ensuremath{-}}{\ensuremath{\pi}}^{0}$. The largest amount of disagreement between the expected rate for ${e}^{+}{e}^{\ensuremath{-}}\ensuremath{\rightarrow}{\ensuremath{\gamma}}^{*}\ensuremath{\rightarrow}X$ and that for ${e}^{+}{e}^{\ensuremath{-}}\ensuremath{\rightarrow}X$ at $\sqrt{s}=3.773\text{ }\mathrm{GeV}$ is found for $X=\ensuremath{\phi}\ensuremath{\eta}$, at an excess cross section of $(2.4\ifmmode\pm\else\textpm\fi{}0.6)\text{ }\mathrm{pb}$ [${\ensuremath{\Gamma}}_{\ensuremath{\phi}\ensuremath{\eta}}^{\ensuremath{\psi}(3770)}=(7.4\ifmmode\pm\else\textpm\fi{}1.6)\text{ }\mathrm{keV}$], and a suggestive suppression is seen for ${\ensuremath{\pi}}^{+}{\ensuremath{\pi}}^{\ensuremath{-}}{\ensuremath{\pi}}^{0}$ and $\ensuremath{\rho}\ensuremath{\pi}$. We conclude with form factor determinations for $\ensuremath{\omega}{\ensuremath{\pi}}^{0}$, $\ensuremath{\rho}\ensuremath{\eta}$, and $\ensuremath{\rho}{\ensuremath{\eta}}^{\ensuremath{'}}$.

38 citations


Journal ArticleDOI
N. E. Adam1, J. P. Alexander1, Karl Berkelman1, D. G. Cassel1, J. E. Duboscq1, K. M. Ecklund1, R. Ehrlich1, L. Fields1, L. K. Gibbons1, R. Gray1, S. W. Gray1, D. L. Hartill1, B. K. Heltsley1, D. Hertz1, C. D. Jones1, J. Kandaswamy1, D. L. Kreinick1, V. E. Kuznetsov1, H. Mahlke-Krüger1, T. O. Meyer1, Peter Onyisi1, Juliet Ritchie Patterson1, D. Peterson1, J. Pivarski1, D. Riley1, Anders Ryd1, A. J. Sadoff1, H. Schwarthoff1, X. Shi1, S. Stroiney1, Werner Sun1, T. Wilksen1, M. Weinberger1, S. B. Athar2, R. Patel2, V. Potlia2, H. Stoeck2, John Yelton2, P. Rubin3, C. Cawlfield4, B. I. Eisenstein4, I. Karliner4, Dong Hee Kim4, N. Lowrey4, P. Naik4, C. Sedlack4, Mats A Selen4, E. J. White4, James E Wiss4, M. R. Shepherd5, D. Z. Besson6, T. K. Pedlar7, D. Cronin-Hennessy8, K. Y. Gao8, D. T. Gong8, J. Hietala8, Yuichi Kubota8, T. Klein8, B. W. Lang8, R. Poling8, A. W. Scott8, A. Smith8, Sean A Dobbs9, Z. Metreveli9, Kamal K. Seth9, Amiran Tomaradze9, Peter K. Zweber9, J. A. Ernst10, Horst Severini11, S. A. Dytman12, W. Love12, V. Savinov12, O. Aquines13, Z. Li13, A. Lopez13, S. Mehrabyan13, H. Mendez13, J. E. Ramirez13, G. S. Huang14, D. H. Miller14, V. Pavlunin14, B. Sanghi14, Ian Shipsey14, B. Xin14, G. S. Adams15, M. Anderson15, J. P. Cummings15, I. Danko15, J. Napolitano15, Q. He16, J. Insler16, H. Muramatsu16, C. S. Park16, E. H. Thorndike16, T. E. Coan17, Y. S. Gao17, F. Liu17, Marina Artuso18, S. Blusk18, J. Butt18, Li Jingyuan18, N. Menaa18, R. Mountain18, S. Nisar18, K. Randrianarivony18, R. Redjimi18, R. Sia18, Tomasz Skwarnicki18, Sheldon Stone18, Jing Wang18, K. Zhang18, S. E. Csorna19, G. Bonvicini20, D. Cinabro20, M. Dubrovin20, A. Lincoln20, D. M. Asner21, K. W. Edwards21, R. A. Briere22, I. C. Brock23, I. C. Brock22, Junjie Chen22, Thomas Ferguson22, G. Tatishvili22, Helmut Vogel22, M. E. Watkins22, Jonathan L. Rosner24 
TL;DR: In this paper, the authors present measurements of the inclusive branching fractions for the decays D{sup + {yields}Xe{sup+} + {nu}{sub e}, using 281 pb{sup -1} of data collected on the {psi}(3770) resonance with the CLEO-c detector.
Abstract: We present measurements of the inclusive branching fractions for the decays D{sup +}{yields}Xe{sup +}{nu}{sub e} and D{sup 0}{yields}Xe{sup +}{nu}{sub e}, using 281 pb{sup -1} of data collected on the {psi}(3770) resonance with the CLEO-c detector. We find B(D{sup 0}{yields}Xe{sup +}{nu}{sub e})=(6.46{+-}0.17{+-}0.13)% and B(D{sup +}{yields}Xe{sup +}{nu}{sub e})=(16.13{+-}0.20{+-}0.33)%. Using the known D meson lifetimes, we obtain the ratio {gamma}{sub D{sup +}}{sup sl}/{gamma}{sub D{sup 0}}{sup sl}=0.985{+-}0.028{+-}0.015, confirming isospin invariance at the level of 3%. The positron momentum spectra from D{sup +} and D{sup 0} have consistent shapes.

28 citations


Journal ArticleDOI
T. E. Coan1, Y. S. Gao1, F. Liu1, Marina Artuso2, C. Boulahouache2, S. Blusk2, J. Butt2, O. Dorjkhaidav2, Li Jingyuan2, N. Menaa2, R. Mountain2, R. Nandakumar2, K. Randrianarivony2, R. Redjimi2, R. Sia2, Tomasz Skwarnicki2, Sheldon Stone2, J. C. Wang2, K. Zhang2, S. E. Csorna3, G. Bonvicini4, D. Cinabro4, M. Dubrovin4, A. Lincoln4, R. A. Briere5, G. P. Chen5, Junjie Chen5, Thomas Ferguson5, G. Tatishvili5, Hans J. Vogel5, M. E. Watkins5, Jonathan L. Rosner6, N. E. Adam7, J. P. Alexander7, Karl Berkelman7, D. G. Cassel7, V. Crede7, J. E. Duboscq7, K. M. Ecklund7, R. Ehrlich7, L. Fields7, R. S. Galik7, L. K. Gibbons7, B. Gittelman7, R. Gray7, S. W. Gray7, D. L. Hartill7, B. K. Heltsley7, D. Hertz7, C. D. Jones7, J. Kandaswamy7, D. L. Kreinick7, V. E. Kuznetsov7, H. Mahlke-Krüger7, T. O. Meyer7, Peter Onyisi7, Juliet Ritchie Patterson7, D. Peterson7, E. A. Phillips7, J. Pivarski7, D. Riley7, Anders Ryd7, A. J. Sadoff7, H. Schwarthoff7, X. Shi7, M. R. Shepherd7, S. Stroiney7, Werner Sun7, D. Urner7, T. Wilksen7, K. M. Weaver7, M. Weinberger7, S. B. Athar8, Paul Avery8, L. Breva-Newell8, R. Patel8, V. Potlia8, H. Stoeck8, John Yelton8, P. Rubin9, C. Cawlfield10, B. I. Eisenstein10, G. D. Gollin10, I. Karliner10, Dong-Hyun Kim10, N. Lowrey10, P. Naik10, C. Sedlack10, Mats A Selen10, E. J. White10, J. Williams10, James E Wiss10, D. M. Asner11, K. W. Edwards11, D. Z. Besson12, T. K. Pedlar13, D. Cronin-Hennessy14, K. Y. Gao14, D. T. Gong14, J. Hietala14, Yuichi Kubota14, T. Klein14, B. W. Lang14, Shuwang Li14, R. Poling14, A. W. Scott14, A. Smith14, Sean A Dobbs15, Z. Metreveli15, Kamal K. Seth15, Amiran Tomaradze15, Peter K. Zweber15, J. A. Ernst16, Horst Severini17, S. A. Dytman18, W. Love18, S. Mehrabyan18, James Mueller18, V. Savinov18, Z. Li19, A. Lopez19, H. Mendez19, J. E. Ramirez19, G. S. Huang20, D. H. Miller20, V. Pavlunin20, B. Sanghi20, I. P.J. Shipsey20, G. S. Adams21, M. Anderson21, J. P. Cummings21, I. Danko21, J. Napolitano21, Q. He22, H. Muramatsu22, C. S. Park22, E. H. Thorndike22 
TL;DR: In this article, the authors observed the non-D\overline{D}$ decay of collision data acquired with the CLEO detector at the Cornell Electron Storage Ring with a statistical significance of 6.6 standard deviations.
Abstract: From ${e}^{+}{e}^{\ensuremath{-}}$ collision data acquired with the CLEO detector at the Cornell Electron Storage Ring, we observe the non-$D\overline{D}$ decay $\ensuremath{\psi}(3770)\ensuremath{\rightarrow}\ensuremath{\gamma}{\ensuremath{\chi}}_{c1}$ with a statistical significance of 6.6 standard deviations, using the two-photon cascades to $J/\ensuremath{\psi}$ and $J/\ensuremath{\psi}\ensuremath{\rightarrow}{\ensuremath{\ell}}^{+}{\ensuremath{\ell}}^{\ensuremath{-}}$. We determine $\ensuremath{\sigma}\mathbf{(}{e}^{+}{e}^{\ensuremath{-}}\ensuremath{\rightarrow}\ensuremath{\psi}(3770)\mathbf{)}\ifmmode\times\else\texttimes\fi{}\mathcal{B}\mathbf{(}\ensuremath{\psi}(3770)\ensuremath{\rightarrow}\ensuremath{\gamma}{\ensuremath{\chi}}_{c1}\mathbf{)}=(18.0\ifmmode\pm\else\textpm\fi{}3.3\ifmmode\pm\else\textpm\fi{}2.5)\text{ }\text{ }\mathrm{pb}$ and branching fraction $\mathcal{B}\mathbf{(}\ensuremath{\psi}(3770)\ensuremath{\rightarrow}\ensuremath{\gamma}{\ensuremath{\chi}}_{c1}\mathbf{)}=(2.8\ifmmode\pm\else\textpm\fi{}0.5\ifmmode\pm\else\textpm\fi{}0.4)\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}3}$. We set 90% C.L. upper limits for the transition to ${\ensuremath{\chi}}_{c2}$ $({\ensuremath{\chi}}_{c0})$: $\ensuremath{\sigma}\ifmmode\times\else\texttimes\fi{}\mathcal{B}l5.7\text{ }\text{ }\mathrm{pb}$ ($l282\text{ }\text{ }\mathrm{pb}$) and $\mathcal{B}l0.9\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}3}$ ($l44\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}3}$). We also determine $\ensuremath{\Gamma}\mathbf{(}\ensuremath{\psi}(3770)\ensuremath{\rightarrow}\ensuremath{\gamma}{\ensuremath{\chi}}_{c1}\mathbf{)}/\ensuremath{\Gamma}\mathbf{(}\ensuremath{\psi}(3770)\ensuremath{\rightarrow}{\ensuremath{\pi}}^{+}{\ensuremath{\pi}}^{\ensuremath{-}}J/\ensuremath{\psi}\mathbf{)}=1.5\ifmmode\pm\else\textpm\fi{}0.3\ifmmode\pm\else\textpm\fi{}0.3$ ($g1.0$ at 90% C.L.), which bears upon the interpretation of $X(3872)$.

21 citations


Journal ArticleDOI
Jonathan L. Rosner1, N. E. Adam2, J. P. Alexander2, Karl Berkelman2, D. G. Cassel2, J. E. Duboscq2, K. M. Ecklund2, R. Ehrlich2, L. Fields2, L. K. Gibbons2, R. Gray2, S. W. Gray2, D. L. Hartill2, B. K. Heltsley2, D. Hertz2, C. D. Jones2, J. Kandaswamy2, D. L. Kreinick2, V. E. Kuznetsov2, H. Mahlke-Krüger2, T. O. Meyer2, Peter Onyisi2, Juliet Ritchie Patterson2, D. Peterson2, E. A. Phillips2, J. Pivarski2, D. Riley2, Anders Ryd2, A. J. Sadoff2, H. Schwarthoff2, X. Shi2, S. Stroiney2, Werner Sun2, T. Wilksen2, M. Weinberger2, S. B. Athar3, Paul Avery3, L. Breva-Newell3, R. Patel3, V. Potlia3, H. Stoeck3, John Yelton3, P. Rubin4, C. Cawlfield5, B. I. Eisenstein5, I. Karliner5, Dong-Hyun Kim5, N. Lowrey5, P. Naik5, C. Sedlack5, Mats A Selen5, J. J. Thaler5, E. J. White5, James E Wiss5, M. R. Shepherd6, D. M. Asner7, K. W. Edwards7, D. Z. Besson8, T. K. Pedlar9, D. Cronin-Hennessy10, K. Y. Gao10, D. T. Gong10, J. Hietala10, Yuichi Kubota10, T. Klein10, B. W. Lang10, R. Poling10, A. W. Scott10, A. Smith10, Sean A Dobbs11, Z. Metreveli11, Kamal K. Seth11, Amiran Tomaradze11, Peter K. Zweber11, J. A. Ernst12, K. E. Arms13, Horst Severini14, S. A. Dytman15, W. Love15, S. Mehrabyan15, James Mueller15, V. Savinov15, Z. Li16, A. Lopez16, H. Mendez16, J. E. Ramirez16, G. S. Huang17, D. H. Miller17, V. Pavlunin17, B. Sanghi17, I. P.J. Shipsey17, G. S. Adams18, M. Anderson18, J. P. Cummings18, I. Danko18, J. Napolitano18, Q. He19, H. Muramatsu19, C. S. Park19, E. H. Thorndike19, T. E. Coan20, Y. S. Gao20, F. Liu20, Ryszard Stroynowski20, Marina Artuso21, C. Boulahouache21, S. Blusk21, J. Butt21, Li Jingyuan21, N. Menaa21, R. Mountain21, S. Nisar21, K. Randrianarivony21, R. Redjimi21, R. Sia21, Tomasz Skwarnicki21, Sheldon Stone21, Jing Wang21, K. Zhang21, S. E. Csorna22, G. Bonvicini23, D. Cinabro23, M. Dubrovin23, A. Lincoln23, A. J. Weinstein24, R. A. Briere25, G. P. Chen25, Junjie Chen25, Thomas Ferguson25, G. Tatishvili25, Hans J. Vogel25, M. E. Watkins25 
TL;DR: In this article, the authors present experimental limits on high-q^2 contributions to charmless semileptonic B decays of the form expected from the weak annihilation (WA) decay mechanism.
Abstract: We present the first experimental limits on high-q^2 contributions to charmless semileptonic B decays of the form expected from the weak annihilation (WA) decay mechanism. Such contributions could bias determinations of |V_(ub)| from inclusive measurements of B→X_ulν. Using a wide range of models based on available theoretical input we set a limit of Γ_(WA)/Γ_(b→u) <7.4% (90% confidence level) on the WA fraction, and assess the impact on previous inclusive determinations of |V_(ub)|.

18 citations


Journal ArticleDOI
G. Bonvicini1, D. Cinabro1, M. Dubrovin1, A. Lincoln1, Adolf Bornheim2, S. P. Pappas2, A. J. Weinstein2, D. M. Asner3, K. W. Edwards3, R. A. Briere4, G. P. Chen4, Junjie Chen4, Thomas Ferguson4, G. Tatishvili4, Hans J. Vogel4, M. E. Watkins4, Jonathan L. Rosner5, N. E. Adam6, J. P. Alexander6, Karl Berkelman6, D. G. Cassel6, V. Crede6, J. E. Duboscq6, K. M. Ecklund6, R. Ehrlich6, L. Fields6, L. K. Gibbons6, B. Gittelman6, R. Gray6, S. W. Gray6, D. L. Hartill6, B. K. Heltsley6, D. Hertz6, C. D. Jones6, J. Kandaswamy6, D. L. Kreinick6, V. E. Kuznetsov6, H. Mahlke-Krüger6, T. O. Meyer6, Peter Onyisi6, Juliet Ritchie Patterson6, D. Peterson6, E. A. Phillips6, J. Pivarski6, D. Riley6, Anders Ryd6, A. J. Sadoff6, H. Schwarthoff6, X. Shi6, M. R. Shepherd6, S. Stroiney6, Werner Sun6, D. Urner6, T. Wilksen6, K. M. Weaver6, M. Weinberger6, S. B. Athar7, Paul Avery7, L. Breva-Newell7, R. Patel7, V. Potlia7, H. Stoeck7, John Yelton7, P. Rubin8, C. Cawlfield9, B. I. Eisenstein9, G. D. Gollin9, I. Karliner9, Dong-Hyun Kim9, N. Lowrey9, P. Naik9, C. Sedlack9, Mats A Selen9, E. J. White9, J. Williams9, James E Wiss9, D. Z. Besson10, T. K. Pedlar11, D. Cronin-Hennessy12, K. Y. Gao12, D. T. Gong12, J. Hietala12, Yuichi Kubota12, T. Klein12, B. W. Lang12, Shuwang Li12, R. Poling12, A. W. Scott12, A. Smith12, Sean A Dobbs13, Z. Metreveli13, Kamal K. Seth13, Amiran Tomaradze13, Peter K. Zweber13, J. A. Ernst14, K. E. Arms15, Horst Severini16, S. A. Dytman17, W. Love17, S. Mehrabyan17, James Mueller17, V. Savinov17, Z. Li18, A. Lopez18, H. Mendez18, J. E. Ramirez18, G. S. Huang19, D. H. Miller19, V. Pavlunin19, B. Sanghi19, I. P.J. Shipsey19, G. S. Adams20, M. Anderson20, J. P. Cummings20, I. Danko20, J. Napolitano20, Q. He21, H. Muramatsu21, C. S. Park21, E. H. Thorndike21, T. E. Coan22, Y. S. Gao22, F. Liu22, Yurii Maravin22, Marina Artuso23, C. Boulahouache23, S. Blusk23, J. Butt23, O. Dorjkhaidav23, Li Jingyuan23, N. Menaa23, R. Mountain23, R. Nandakumar23, K. Randrianarivony23, R. Redjimi23, R. Sia23, Tomasz Skwarnicki23, Sheldon Stone23, J. C. Wang23, K. Zhang23, S. E. Csorna24 
TL;DR: In this paper, the CLEO detector at the Cornell Electron Storage Ring has been used to observe the B{sub s} meson in e{sup +}e{sup -} annihilation at the upilon (5S) resonance.
Abstract: Using the CLEO detector at the Cornell Electron Storage Ring, we have observed the B{sub s} meson in e{sup +}e{sup -} annihilation at the {upsilon}(5S) resonance. We find 14 candidates consistent with B{sub s} decays into final states with a J/{psi} or a D{sub s}{sup (*)-}. The probability that we have observed a background fluctuation is less than 8x10{sup -10}. We have established that at the energy of the {upsilon}(5S) resonance B{sub s} production proceeds predominantly through the creation of B{sub s}*B{sub s}* pairs. We find {sigma}(e{sup +}e{sup -}{yields}B{sub s}*B{sub s}*)=[0.11{sub -0.03}{sup +0.04}(stat){+-}0.02(syst)] nb, and set the following limits: {sigma}(e{sup +}e{sup -}{yields}B{sub s}B{sub s})/{sigma}(e{sup +}e{sup -}{yields}B{sub s}*B{sub s}*)<0.16 and [{sigma}(e{sup +}e{sup -}{yields}B{sub s}B{sub s}*)+{sigma}(e{sup +}e{sup -}{yields}B{sub s}*B{sub s})]/{sigma}(e{sup +}e{sup -}{yields}B{sub s}*= B{sub s}*)<0.16 (90% C.L.). The mass of the B{sub s}* meson is measured to be M{sub B{sub s}}{sub *}=[5.414{+-}0.001(stat){+-}0.003(syst)] GeV/c{sup 2}.

14 citations


Journal ArticleDOI
Sean A Dobbs1, Z. Metreveli1, Kamal K. Seth1, Amiran Tomaradze1, Peter K. Zweber1, J. A. Ernst2, K. E. Arms3, Horst Severini4, S. A. Dytman5, W. Love5, S. Mehrabyan5, James Mueller5, V. Savinov5, Z. Li6, Alan D. Lopez6, H. Mendez6, J. E. Ramirez6, G. S. Huang7, D. H. Miller7, V. Pavlunin7, B. Sanghi7, I. P.J. Shipsey7, G. S. Adams8, M. Anderson8, J. P. Cummings8, I. Danko8, J. Napolitano8, Q. He9, H. Muramatsu9, C. S. Park9, E. H. Thorndike9, T. E. Coan10, Y. S. Gao10, F. Liu10, Marina Artuso11, C. Boulahouache11, S. Blusk11, J. Butt11, O. Dorjkhaidav11, Li Jingyuan11, N. Menaa11, R. Mountain11, K. Randrianarivony11, R. Redjimi11, R. Sia11, Tomasz Skwarnicki11, Sheldon Stone11, Jing Wang11, K. Zhang11, S. E. Csorna12, G. Bonvicini13, D. Cinabro13, M. Dubrovin13, A. Lincoln13, Adolf Bornheim14, S. P. Pappas14, A. J. Weinstein14, R. A. Briere15, G. P. Chen15, Junjie Chen15, Thomas Ferguson15, G. Tatishvili15, Hans J. Vogel15, M. E. Watkins15, Jonathan L. Rosner16, N. E. Adam17, J. P. Alexander17, Karl Berkelman17, D. G. Cassel17, J. E. Duboscq17, K. M. Ecklund17, R. Ehrlich17, L. Fields17, R. S. Galik17, L. K. Gibbons17, R. Gray17, S. W. Gray17, D. L. Hartill17, B. K. Heltsley17, D. Hertz17, C. D. Jones17, J. Kandaswamy17, D. L. Kreinick17, V. E. Kuznetsov17, H. Mahlke-Krüger17, T. O. Meyer17, Peter Onyisi17, Juliet Ritchie Patterson17, D. Peterson17, E. A. Phillips17, J. Pivarski17, D. Riley17, Anders Ryd17, A. J. Sadoff17, H. Schwarthoff17, Xin Shi17, M. R. Shepherd17, S. Stroiney17, Werner Sun17, T. Wilksen17, M. Weinberger17, S. B. Athar18, Paul Avery18, L. Breva-Newell18, R. Patel18, V. Potlia18, H. Stoeck18, John Yelton18, P. Rubin19, C. Cawlfield20, B. I. Eisenstein20, I. Karliner20, Dong-Hyun Kim20, N. Lowrey20, P. Naik20, C. Sedlack20, Mats A Selen20, E. J. White20, J. Williams20, James E Wiss20, D. M. Asner21, K. W. Edwards21, D. Z. Besson22, T. K. Pedlar23, D. Cronin-Hennessy24, K. Y. Gao24, D. T. Gong24, J. Hietala24, Yuichi Kubota24, T. Klein24, B. W. Lang24, Shuwang Li24, R. Poling24, A. W. Scott24, A. Smith24 
TL;DR: In this paper, the two-photon width of X_(c2)^3P_2 state of charmonium has been measured using 14.4 fb^(-1) of e^+e^-data taken at √s=======9.46-11.30 GeV with the CLEO III detector.
Abstract: The two-photon width of X_(c2)^3P_2 state of charmonium has been measured using 14.4 fb^(-1) of e^+e^-data taken at √s =9.46–11.30 GeV with the CLEO III detector. The yy-fusion reaction studied is e^+e^- → e^+e^-yy, → yy X_(c2) → yJ/Ψ → ye^+e^-(µ^+µ^-). We measure Г_(yy) (X_(c2))B(X_(c2)) → y J/Ψ)B(J/Ψ → e^+e^- + µ^+µ^-)= 13.2 ± 1.4(stat)± 1.1(syst) eV, and obtain Г yy(Xc2)= 559 ± 57(stat) ± 48(syst) ± 36(br) eV. This result is in excellent agreement with the result of -fusion measurement by Belle and is consistent with that of the pp → X_(c2) → yy measurement, when they are both reevaluated using the recent CLEO result for the radiative decay X_(c2) → J/Ψ .

9 citations


Journal ArticleDOI
C. Cawlfield1, B. I. Eisenstein1, I. Karliner1, Dong Hee Kim1, N. Lowrey1, P. Naik1, C. Sedlack1, Mats A Selen1, E. J. White1, J. Williams1, James E Wiss1, D. M. Asner2, K. W. Edwards2, D. Z. Besson3, T. K. Pedlar4, D. Cronin-Hennessy5, K. Y. Gao5, D. T. Gong5, J. Hietala5, Yuichi Kubota5, T. Klein5, B. W. Lang5, Shuwang Li5, R. Poling5, A. W. Scott5, A. Smith5, Sean A Dobbs6, Z. Metreveli6, Kamal K. Seth6, Amiran Tomaradze6, Peter K. Zweber6, J. A. Ernst7, K. E. Arms8, Horst Severini9, S. A. Dytman10, W. Love10, S. Mehrabyan10, James Mueller10, V. Savinov10, Z. Li11, A. Lopez11, H. Mendez11, J. E. Ramirez11, G. S. Huang12, D. H. Miller12, V. Pavlunin12, B. Sanghi12, I. P.J. Shipsey12, G. S. Adams13, M. Anderson13, J. P. Cummings13, I. Danko13, J. Napolitano13, Q. He14, H. Muramatsu14, C. S. Park14, E. H. Thorndike14, T. E. Coan15, Y. S. Gao15, F. Liu15, Marina Artuso16, C. Boulahouache16, S. Blusk16, J. Butt16, O. Dorjkhaidav16, Li Jingyuan16, N. Menaa16, R. Mountain16, K. Randrianarivony16, R. Redjimi16, R. Sia16, Tomasz Skwarnicki16, Sheldon Stone16, Jing Wang16, K. Zhang16, S. E. Csorna17, G. Bonvicini18, D. Cinabro18, M. Dubrovin18, A. Lincoln18, Adolf Bornheim19, S. P. Pappas19, A. J. Weinstein19, R. A. Briere20, G. P. Chen20, Junjie Chen20, Thomas Ferguson20, G. Tatishvili20, Hans J. Vogel20, M. E. Watkins20, Jonathan L. Rosner21, N. E. Adam22, J. P. Alexander22, Karl Berkelman22, D. G. Cassel22, J. E. Duboscq22, K. M. Ecklund22, R. Ehrlich22, T. Engelmore22, T. Engelmore23, L. Fields22, R. S. Galik22, L. K. Gibbons22, R. Gray22, S. W. Gray22, D. L. Hartill22, B. K. Heltsley22, D. Hertz22, C. D. Jones22, J. Kandaswamy22, D. L. Kreinick22, V. E. Kuznetsov22, H. Mahlke-Krüger22, T. O. Meyer22, Peter Onyisi22, Juliet Ritchie Patterson22, D. Peterson22, E. A. Phillips22, J. Pivarski22, D. Riley22, Anders Ryd22, A. J. Sadoff22, H. Schwarthoff22, X. Shi22, M. R. Shepherd22, S. Stroiney22, Werner Sun22, K. M. Weaver22, K. M. Weaver24, T. Wilksen22, M. Weinberger22, S. B. Athar25, Paul Avery25, L. Breva-Newell25, R. Patel25, V. Potlia25, H. Stoeck25, John Yelton25, P. Rubin26 
TL;DR: In this article, the authors search for the di-pion transition chi_b(2P) -> pi pi pi chi-b(1P) in the CLEO III sample of Upsilon(3S) decays in the exclusive decay chain.
Abstract: We have searched for the di-pion transition chi_b(2P) -> pi pi chi_b(1P) in the CLEO III sample of Upsilon(3S) decays in the exclusive decay chain: Upsilon(3S) -> gamma chi_b(2P), chi_b(2P) -> pi pi chi_b(1P), chi_b(1P) -> gamma Upsilon(1S), Upsilon(1S) -> lepton pairs. Our studies include both pi+ pi- and pi0 pi0, each analyzed both in fully reconstructed events and in events with one pion undetected. We show that the null hypothesis is not substantiated. Under reasonable assumptions, we find the partial decay width to be Gamma[chi_b(2P) -> pi pi chi_b(1P)] = (0.83 +/- 0.22 +/- 0.08 +/- 0.19) keV, with the uncertainties being statistical, internal CLEO systematics, and common systematics from outside sources.

Journal ArticleDOI
P. Rubin1, C. Cawlfield2, B. I. Eisenstein2, I. Karliner2, Dong-Hyun Kim2, N. Lowrey2, P. Naik2, C. Sedlack2, Mats A Selen2, E. J. White2, James E Wiss2, M. R. Shepherd3, D. Z. Besson4, T. K. Pedlar5, D. Cronin-Hennessy6, K. Y. Gao6, D. T. Gong6, J. Hietala6, Yuichi Kubota6, T. Klein6, B. W. Lang6, R. Poling6, A. W. Scott6, A. Smith6, Sean A Dobbs7, Z. Metreveli7, Kamal K. Seth7, Amiran Tomaradze7, Peter K. Zweber7, J. A. Ernst8, Horst Severini9, S. A. Dytman10, W. Love10, V. Savinov10, O. Aquines11, Z. Li11, A. Lopez11, S. Mehrabyan11, H. Mendez11, J. E. Ramirez11, G. S. Huang12, D. H. Miller12, V. Pavlunin12, B. Sanghi12, I. P.J. Shipsey12, B. Xin12, G. S. Adams13, M. Anderson13, J. P. Cummings13, I. Danko13, J. Napolitano13, Q. He14, J. Insler14, H. Muramatsu14, C. S. Park14, E. H. Thorndike14, T. E. Coan15, Y. S. Gao15, F. Liu15, Marina Artuso16, S. Blusk16, J. Butt16, Li Jingyuan16, N. Menaa16, R. Mountain16, S. Nisar16, K. Randrianarivony16, R. Redjimi16, R. Sia16, Tomasz Skwarnicki16, Sheldon Stone16, Jing Wang16, K. Zhang16, S. E. Csorna17, G. Bonvicini18, D. Cinabro18, M. Dubrovin18, A. Lincoln18, D. M. Asner19, K. W. Edwards19, R. A. Briere20, Ian Brock20, Junjie Chen20, Thomas Ferguson20, G. Tatishvili20, Hans J. Vogel20, M. E. Watkins20, Jonathan L. Rosner21, N. E. Adam22, J. P. Alexander22, Karl Berkelman22, D. G. Cassel22, J. E. Duboscq22, K. M. Ecklund22, R. Ehrlich22, L. Fields22, L. K. Gibbons22, R. Gray22, S. W. Gray22, D. L. Hartill22, B. K. Heltsley22, D. Hertz22, C. D. Jones22, J. Kandaswamy22, D. L. Kreinick22, V. E. Kuznetsov22, H. Mahlke-Krüger22, T. O. Meyer22, Peter Onyisi22, Juliet Ritchie Patterson22, D. Peterson22, J. Pivarski22, D. Riley22, Anders Ryd22, A. J. Sadoff22, H. Schwarthoff22, X. Shi22, S. Stroiney22, Werner Sun22, T. Wilksen22, M. Weinberger22, S. B. Athar23, R. Patel23, V. Potlia23, H. Stoeck23, John Yelton23 
TL;DR: In this article, the relative decay rates in purely leptonic D{sup +} meson decays were investigated and an upper limit on the ratio of R to the standard model expectation of 265 was established at 90% confidence level.
Abstract: We test whether or not the {tau} lepton manifests the same couplings as the {mu} lepton by investigating the relative decay rates in purely leptonic D{sup +} meson decays We use 281 pb{sup -1} of data accumulated at the {psi}(3770) resonance with the CLEO-c detector, to limit B(D{sup +}{yields}{tau}{sup +}{nu})<21x10{sup -3} at 90% confidence level (CL), thus allowing us to place the first upper limit on the ratio R={gamma}(D{sup +}{yields}{tau}{sup +}{nu})/{gamma}(D{sup +}{yields}{mu}{sup +}{nu}) The ratio of R to the standard model expectation of 265 then is <18 at 90% CL, consistent with the prediction of lepton universality

Posted Content
TL;DR: In this paper, the main goal is the measurement of the angles γ and β from B decays involving D or charmonium mesons, as well as new approaches and high statistics projections.
Abstract: The main goal is the measurement of the angles γ and β from B decays involving D or charmonium mesons. The limitations and ways to overcome them will be discussed, as well as new approaches and high statistics projections.