scispace - formally typeset
D

D. M. Asner

Researcher at Pacific Northwest National Laboratory

Publications -  210
Citations -  33792

D. M. Asner is an academic researcher from Pacific Northwest National Laboratory. The author has contributed to research in topics: Large Hadron Collider & Branching fraction. The author has an hindex of 40, co-authored 112 publications receiving 31378 citations. Previous affiliations of D. M. Asner include Carleton University & CERN.

Papers
More filters
Journal ArticleDOI

Review of Particle Physics

Claude Amsler, +176 more
- 01 Jul 1996 - 
TL;DR: This biennial Review summarizes much of particle physics, using data from previous editions.
Journal ArticleDOI

Review of Particle Physics

Keith A. Olive, +225 more
- 01 Aug 2014 - 
TL;DR: The review as discussed by the authors summarizes much of particle physics and cosmology using data from previous editions, plus 3,283 new measurements from 899 Japers, including the recently discovered Higgs boson, leptons, quarks, mesons and baryons.
Book

The ATLAS Experiment at the CERN Large Hadron Collider

Georges Aad, +3032 more
TL;DR: The ATLAS detector as installed in its experimental cavern at point 1 at CERN is described in this paper, where a brief overview of the expected performance of the detector when the Large Hadron Collider begins operation is also presented.
Journal ArticleDOI

Review of Particle Physics

Koji Nakamura, +183 more
- 07 Sep 2010 - 
TL;DR: In this article, a biennial review summarizes much of particle physics using data from previous editions, plus 2158 new measurements from 551 papers, they list, evaluate and average measured properties of gauge bosons, leptons, quarks, mesons, and baryons.
Journal ArticleDOI

The ATLAS Simulation Infrastructure

Georges Aad, +2585 more
TL;DR: The simulation software for the ATLAS Experiment at the Large Hadron Collider is being used for large-scale production of events on the LHC Computing Grid, including supporting the detector description, interfacing the event generation, and combining the GEANT4 simulation of the response of the individual detectors.