scispace - formally typeset
Search or ask a question
Author

D. M. Asner

Other affiliations: Carleton University, CERN
Bio: D. M. Asner is an academic researcher from Pacific Northwest National Laboratory. The author has contributed to research in topics: Physics & Large Hadron Collider. The author has an hindex of 40, co-authored 112 publications receiving 31378 citations. Previous affiliations of D. M. Asner include Carleton University & CERN.


Papers
More filters
Journal ArticleDOI
D. Z. Besson1, T. K. Pedlar2, D. Cronin-Hennessy3, K. Y. Gao3, D. T. Gong3, J. Hietala3, Yuichi Kubota3, T. Klein3, B. W. Lang3, R. Poling3, A. W. Scott3, A. Smith3, Sean A Dobbs4, Z. Metreveli4, Kamal K. Seth4, Amiran Tomaradze4, Peter K. Zweber4, J. A. Ernst5, K. E. Arms6, Horst Severini7, S. A. Dytman8, W. Love8, S. Mehrabyan8, James Mueller8, V. Savinov8, Z. Li9, A. Lopez9, H. Mendez9, J. E. Ramirez9, G. S. Huang10, D. H. Miller10, V. Pavlunin10, B. Sanghi10, Ian Shipsey10, G. S. Adams11, M. Anderson11, J. P. Cummings11, I. Danko11, J. Napolitano11, Q. He12, H. Muramatsu12, C. S. Park12, E. H. Thorndike12, T. E. Coan13, Y. S. Gao13, F. Liu13, Marina Artuso14, C. Boulahouache14, S. Blusk14, J. Butt14, Li Jingyuan14, N. Menaa14, R. Mountain14, S. Nisar14, K. Randrianarivony14, R. Redjimi14, R. Sia14, Tomasz Skwarnicki14, Sheldon Stone14, J. C. Wang14, K. Zhang14, S. E. Csorna15, G. Bonvicini16, D. Cinabro16, M. Dubrovin16, A. Lincoln16, R. A. Briere17, G. P. Chen17, Junjie Chen17, Thomas Ferguson17, G. Tatishvili17, Hans J. Vogel17, M. E. Watkins17, Jonathan L. Rosner18, N. E. Adam19, J. P. Alexander19, Karl Berkelman19, D. G. Cassel19, J. E. Duboscq19, K. M. Ecklund19, R. Ehrlich19, L. Fields19, R. S. Galik19, L. K. Gibbons19, R. Gray19, S. W. Gray19, D. L. Hartill19, B. K. Heltsley19, D. Hertz19, C. D. Jones19, J. Kandaswamy19, D. L. Kreinick19, V. E. Kuznetsov19, H. Mahlke-Krüger19, T. O. Meyer19, Peter Onyisi19, Juliet Ritchie Patterson19, D. Peterson19, E. A. Phillips19, J. Pivarski19, D. Riley19, Anders Ryd19, A. J. Sadoff19, H. Schwarthoff19, X. Shi19, S. Stroiney19, Werner Sun19, T. Wilksen19, M. Weinberger19, S. B. Athar20, Paul Avery20, L. Breva-Newell20, R. Patel20, V. Potlia20, H. Stoeck20, John Yelton20, P. Rubin21, C. Cawlfield22, B. I. Eisenstein22, I. Karliner22, Dong-Hyun Kim22, N. Lowrey22, P. Naik22, C. Sedlack22, Mats A Selen22, E. J. White22, James E Wiss22, M. R. Shepherd23, D. M. Asner24, K. W. Edwards24 
TL;DR: In this article, a study of exclusive radiative decays of the {upsilon}(1S) resonance into the final states {gamma}{pi}{sup 0}{pi-sup 0, ε-, ε-π-π 0, ε −1.13 fb{sup −1} of e{sup +}e{sup -} annihilation data collected at {radical}(s)=9.46 GeV with the CLEO III detector operating at the Cornell Electron Storage Ring.
Abstract: We report on a study of exclusive radiative decays of the {upsilon}(1S) resonance into the final states {gamma}{pi}{sup 0}{pi}{sup 0}, {gamma}{eta}{eta} and {gamma}{pi}{sup 0}{eta}, using 1.13 fb{sup -1} of e{sup +}e{sup -} annihilation data collected at {radical}(s)=9.46 GeV with the CLEO III detector operating at the Cornell Electron Storage Ring. In the channel {gamma}{pi}{sup 0}{pi}{sup 0}, we measure the branching ratio for the decay mode {upsilon}(1S){yields}{gamma}f{sub 2}(1270) to be (10.5{+-}1.6(stat){sub -1.8}{sup +1.9}(syst))x10{sup -5}. We place upper limits on the product branching ratios for the isoscalar resonances f{sub 0}(1500) and f{sub 0}(1710) for the {pi}{sup 0}{pi}{sup 0} and {eta}{eta} decay channels. We also set an upper limit on the {upsilon}(1S) radiative decay into {pi}{sup 0}{eta}.

6 citations

Alberto Accardi, D. M. Asner, H. Atmacan, Richard Baartman, Sw. Banerjee, Anne K. Beaubien, J. V. Bennett, M. Bertemes, Martin Florian Bessner, Dwaipayan Biswas, G. Bonvicini, N. Brenny, R. A. Briere, T. E. Browder, C. Chen, Seema Choudhury, D. Cinabro, J. Cochran, L. M. Cremaldi, Wouter Deconinck, A. Di Canto, S. Dubey, K. T. Flood, B. G. Fulsom, V. Gaur, Michael Gericke, R. Godang, Ti Gu, Y. H. Guan, Jeri Paige Guilliams, C. Hadjivasiliou, O. Hartbrich, C. Hearty, Martin Hoferichter, W. W. Jacobs, D. E. Jaffe, Tobias Junginger, L. Kapit'anov'a, Chris Ketter, Akshay Khatri, K. Kinoshita, S. Kohani, Ivan Koop, H. Korandla, I. K. Sari, R. Kroeger, Jason Kumar, K Kumara, M. Kuriki, Tty Lam, Paul Laycock, F. Le Diberder, L Z Li, Z. J. Liptak, D. Liventsev, Juliette Mammei, Alke Martens, Frank Meier, C. A. Miller, Sushmita Mitra, Kavitha Moorthy, A. Natochii, N. Nellikunnummel, K. Nishimura, A.V. Otboev, Emma Oxford, A. Pańta, Karol Parham, Beverley Joan Parker, T. K. Pedlar, Y L Peng, Richard Peschke, L. E. Piilonen, T. Planche, SS Pokharel, S. Prell, Harsh Purwar, David E. Herrmann, J. M. Roney, C. Rosenfeld, Dibakar Sahoo, David B. Sanders, A. Sangal, V. Savinov, S. Schneider, J. Schueler, A. J. Schwartz, Yu. M. Shatunov, V.E. Shebalin, A.L. Sibidanov, A. Signori, Z. S. Stottler, Jan Strube, K. Trabelsi, Shiva S. Tripathi, S. Vahsen, G. S. Varner, A. Vossen, D X Wang, E. Wang, U. Wienands, Lynn Wood, John Yelton, Yuntong Zhai, B. Zhang, D. Cui Zhou, Fabian Zomer 
25 May 2022
TL;DR: In this paper , the left-right asymmetry measurements of e + e − transitions to pairs of muons, taus, and b-quarks were performed with precision sin 2 independent left right asymmetric measurements.
Abstract: precision sin 2 independent left-right asymmetry measurements of e + e − transitions to pairs of muons, taus, and b-quarks.

6 citations

Journal ArticleDOI
G. S. Adams1, M. Anderson1, J. P. Cummings1, I. Danko1, D. Hu1, B. Moziak1, J. Napolitano1, Q. He2, J. Insler2, H. Muramatsu2, C. S. Park2, E. H. Thorndike2, F. Yang2, Marina Artuso3, S. Blusk3, S. Khalil3, Li Jingyuan3, N. Menaa3, R. Mountain3, S. Nisar3, K. Randrianarivony3, R. Sia3, Tomasz Skwarnicki3, Sheldon Stone3, Jing Wang3, G. Bonvicini4, D. Cinabro4, M. Dubrovin4, A. Lincoln4, D. M. Asner5, K. W. Edwards5, P. Naik5, R. A. Briere6, Thomas Ferguson6, G. Tatishvili6, Helmut Vogel6, M. E. Watkins6, Jonathan L. Rosner7, N. E. Adam8, J. P. Alexander8, D. G. Cassel8, J. E. Duboscq8, R. Ehrlich8, L. Fields8, L. K. Gibbons8, R. Gray8, S. W. Gray8, D. L. Hartill8, B. K. Heltsley8, D. Hertz8, C. D. Jones8, J. Kandaswamy8, D. L. Kreinick8, V. E. Kuznetsov8, H. Mahlke-Krüger8, D. Mohapatra8, Peter Onyisi8, Juliet Ritchie Patterson8, D. Peterson8, D. Riley8, Anders Ryd8, A. J. Sadoff8, Xin Shi8, S. Stroiney8, Werner Sun8, T. Wilksen8, S. B. Athar9, R. Patel9, John Yelton9, P. Rubin10, B. I. Eisenstein11, I. Karliner11, N. Lowrey11, Mats A Selen11, E. J. White11, James E Wiss11, R. E. Mitchell12, M. R. Shepherd12, D. Z. Besson13, T. K. Pedlar14, D. Cronin-Hennessy15, K. Y. Gao15, J. Hietala15, Yuichi Kubota15, T. Klein15, B. W. Lang15, R. Poling15, A. W. Scott15, P. Zweber15, Sean A Dobbs16, Z. Metreveli16, K. K. Seth16, Amiran Tomaradze16, J. A. Ernst17, K. M. Ecklund18, Horst Severini19, W. Love20, V. Savinov20, Alan D. Lopez21, S. Mehrabyan21, H. Mendez21, J. E. Ramirez21, J. Y. Ge22, D. H. Miller22, B. Sanghi22, Ian Shipsey22, B. Xin22 
TL;DR: The decays of D{s}{+} mesons to two pseudoscalar mesons from the CLEO-c detector are studied to obtain ratios of branching fractions, where the uncertainties are statistical and systematic, respectively.
Abstract: Using data collected near the ${D}_{s}^{*+}{D}_{s}^{\ensuremath{-}}$ peak production energy ${E}_{\mathrm{cm}}=4170\text{ }\text{ }\mathrm{MeV}$ by the CLEO-c detector, we study the decays of ${D}_{s}^{+}$ mesons to two pseudoscalar mesons. We report on searches for the singly Cabibbo-suppressed ${D}_{s}^{+}$ decay modes ${K}^{+}\ensuremath{\eta}$, ${K}^{+}{\ensuremath{\eta}}^{\ensuremath{'}}$, ${\ensuremath{\pi}}^{+}{K}_{S}^{0}$, ${K}^{+}{\ensuremath{\pi}}^{0}$, and the isospin-forbidden decay mode ${D}_{s}^{+}\ensuremath{\rightarrow}{\ensuremath{\pi}}^{+}{\ensuremath{\pi}}^{0}$. We normalize with respect to the Cabibbo-favored ${D}_{s}^{+}$ modes ${\ensuremath{\pi}}^{+}\ensuremath{\eta}$, ${\ensuremath{\pi}}^{+}{\ensuremath{\eta}}^{\ensuremath{'}}$, and ${K}^{+}{K}_{S}^{0}$, and obtain ratios of branching fractions: $\mathcal{B}({D}_{s}^{+}\ensuremath{\rightarrow}{K}^{+}\ensuremath{\eta})/\mathcal{B}({D}_{s}^{+}\ensuremath{\rightarrow}{\ensuremath{\pi}}^{+}\ensuremath{\eta})=(8.9\ifmmode\pm\else\textpm\fi{}1.5\ifmmode\pm\else\textpm\fi{}0.4)%$, $\mathcal{B}({D}_{s}^{+}\ensuremath{\rightarrow}{K}^{+}{\ensuremath{\eta}}^{\ensuremath{'}})/\mathcal{B}({D}_{s}^{+}\ensuremath{\rightarrow}{\ensuremath{\pi}}^{+}{\ensuremath{\eta}}^{\ensuremath{'}})=(4.2\ifmmode\pm\else\textpm\fi{}1.3\ifmmode\pm\else\textpm\fi{}0.3)%$, $\mathcal{B}({D}_{s}^{+}\ensuremath{\rightarrow}{\ensuremath{\pi}}^{+}{K}_{S}^{0})/\mathcal{B}({D}_{s}^{+}\ensuremath{\rightarrow}{K}^{+}{K}_{S}^{0})=(8.2\ifmmode\pm\else\textpm\fi{}0.9\ifmmode\pm\else\textpm\fi{}0.2)%$, $\mathcal{B}({D}_{s}^{+}\ensuremath{\rightarrow}{K}^{+}{\ensuremath{\pi}}^{0})/\mathcal{B}({D}_{s}^{+}\ensuremath{\rightarrow}{K}^{+}{K}_{S}^{0})=(5.5\ifmmode\pm\else\textpm\fi{}1.3\ifmmode\pm\else\textpm\fi{}0.7)%$, and $\mathcal{B}({D}_{s}^{+}\ensuremath{\rightarrow}{\ensuremath{\pi}}^{+}{\ensuremath{\pi}}^{0})/\mathcal{B}({D}_{s}^{+}\ensuremath{\rightarrow}{K}^{+}{K}_{S}^{0})l4.1%$ at 90% C.L., where the uncertainties are statistical and systematic, respectively.

6 citations

Journal ArticleDOI
TL;DR: In this paper, the decay of the center-of-mass energy (COMEGA) was studied and the four-quark content of the decay was found to be at least 0.20% at the 90% confidence level.
Abstract: We present the first search for the decay ${D}_{s}^{+}\ensuremath{\rightarrow}\ensuremath{\omega}{e}^{+}\ensuremath{ u}$ to test the four-quark content of the ${D}_{s}^{+}$ and the $\ensuremath{\omega}\mathrm{\text{\ensuremath{-}}}\ensuremath{\phi}$ mixing model for this decay. We use $586\text{ }\text{ }{\mathrm{pb}}^{\ensuremath{-}1}$ of ${e}^{+}{e}^{\ensuremath{-}}$ collision data collected at a center-of-mass energy of 4170 MeV. We find no evidence of a signal, and set an upper limit on the branching fraction of $\mathcal{B}({D}_{s}^{+}\ensuremath{\rightarrow}\ensuremath{\omega}{e}^{+}\ensuremath{ u})l0.20%$ at the 90% confidence level.

6 citations


Cited by
More filters
Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, Monique Arnaud3, M. Ashdown4  +334 moreInstitutions (82)
TL;DR: In this article, the authors present a cosmological analysis based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation.
Abstract: This paper presents cosmological results based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation. Our results are in very good agreement with the 2013 analysis of the Planck nominal-mission temperature data, but with increased precision. The temperature and polarization power spectra are consistent with the standard spatially-flat 6-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations (denoted “base ΛCDM” in this paper). From the Planck temperature data combined with Planck lensing, for this cosmology we find a Hubble constant, H0 = (67.8 ± 0.9) km s-1Mpc-1, a matter density parameter Ωm = 0.308 ± 0.012, and a tilted scalar spectral index with ns = 0.968 ± 0.006, consistent with the 2013 analysis. Note that in this abstract we quote 68% confidence limits on measured parameters and 95% upper limits on other parameters. We present the first results of polarization measurements with the Low Frequency Instrument at large angular scales. Combined with the Planck temperature and lensing data, these measurements give a reionization optical depth of τ = 0.066 ± 0.016, corresponding to a reionization redshift of . These results are consistent with those from WMAP polarization measurements cleaned for dust emission using 353-GHz polarization maps from the High Frequency Instrument. We find no evidence for any departure from base ΛCDM in the neutrino sector of the theory; for example, combining Planck observations with other astrophysical data we find Neff = 3.15 ± 0.23 for the effective number of relativistic degrees of freedom, consistent with the value Neff = 3.046 of the Standard Model of particle physics. The sum of neutrino masses is constrained to ∑ mν < 0.23 eV. The spatial curvature of our Universe is found to be very close to zero, with | ΩK | < 0.005. Adding a tensor component as a single-parameter extension to base ΛCDM we find an upper limit on the tensor-to-scalar ratio of r0.002< 0.11, consistent with the Planck 2013 results and consistent with the B-mode polarization constraints from a joint analysis of BICEP2, Keck Array, and Planck (BKP) data. Adding the BKP B-mode data to our analysis leads to a tighter constraint of r0.002 < 0.09 and disfavours inflationarymodels with a V(φ) ∝ φ2 potential. The addition of Planck polarization data leads to strong constraints on deviations from a purely adiabatic spectrum of fluctuations. We find no evidence for any contribution from isocurvature perturbations or from cosmic defects. Combining Planck data with other astrophysical data, including Type Ia supernovae, the equation of state of dark energy is constrained to w = −1.006 ± 0.045, consistent with the expected value for a cosmological constant. The standard big bang nucleosynthesis predictions for the helium and deuterium abundances for the best-fit Planck base ΛCDM cosmology are in excellent agreement with observations. We also constraints on annihilating dark matter and on possible deviations from the standard recombination history. In neither case do we find no evidence for new physics. The Planck results for base ΛCDM are in good agreement with baryon acoustic oscillation data and with the JLA sample of Type Ia supernovae. However, as in the 2013 analysis, the amplitude of the fluctuation spectrum is found to be higher than inferred from some analyses of rich cluster counts and weak gravitational lensing. We show that these tensions cannot easily be resolved with simple modifications of the base ΛCDM cosmology. Apart from these tensions, the base ΛCDM cosmology provides an excellent description of the Planck CMB observations and many other astrophysical data sets.

10,728 citations

Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
Georges Aad1, T. Abajyan2, Brad Abbott3, Jalal Abdallah4  +2964 moreInstitutions (200)
TL;DR: In this article, a search for the Standard Model Higgs boson in proton-proton collisions with the ATLAS detector at the LHC is presented, which has a significance of 5.9 standard deviations, corresponding to a background fluctuation probability of 1.7×10−9.

9,282 citations

Journal ArticleDOI
TL;DR: The Compact Muon Solenoid (CMS) detector at the Large Hadron Collider (LHC) at CERN as mentioned in this paper was designed to study proton-proton (and lead-lead) collisions at a centre-of-mass energy of 14 TeV (5.5 TeV nucleon-nucleon) and at luminosities up to 10(34)cm(-2)s(-1)
Abstract: The Compact Muon Solenoid (CMS) detector is described. The detector operates at the Large Hadron Collider (LHC) at CERN. It was conceived to study proton-proton (and lead-lead) collisions at a centre-of-mass energy of 14 TeV (5.5 TeV nucleon-nucleon) and at luminosities up to 10(34)cm(-2)s(-1) (10(27)cm(-2)s(-1)). At the core of the CMS detector sits a high-magnetic-field and large-bore superconducting solenoid surrounding an all-silicon pixel and strip tracker, a lead-tungstate scintillating-crystals electromagnetic calorimeter, and a brass-scintillator sampling hadron calorimeter. The iron yoke of the flux-return is instrumented with four stations of muon detectors covering most of the 4 pi solid angle. Forward sampling calorimeters extend the pseudo-rapidity coverage to high values (vertical bar eta vertical bar <= 5) assuring very good hermeticity. The overall dimensions of the CMS detector are a length of 21.6 m, a diameter of 14.6 m and a total weight of 12500 t.

5,193 citations