scispace - formally typeset
Search or ask a question
Author

D. Marcuse

Bio: D. Marcuse is an academic researcher. The author has contributed to research in topics: Single-mode optical fiber & Optical fiber. The author has an hindex of 1, co-authored 1 publications receiving 1072 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors consider the possibility that the two fibers of different dimensions are separated in longitudinal direction and are tilted or offset with respect to each other, and the trade-off between slice tolerances with regard to tilt and offset is expressed as an uncertainty principle.
Abstract: This paper analyses losses caused by the misalignment of two fibers joined in a splice. We consider the possibility that the two fibers of different dimensions are separated in longitudinal direction and are tilted or offset with respect to each other. Central to our discussion is the observation that the modes of single-mode fibers are very nearly gaussian in shape regardless of the fiber type step-index or graded-index. The splice losses are thus related to the corresponding losses of gaussian beams. We specify the relation between the actual mode field and the gaussian beam that matches this field optimally. The trade-off between slice tolerances with respect to tilt and offset is expressed as an “uncertainty principle. “ Because of the near-gaussian nature of single-mode fiber fields, our results are immediately applicable to the excitation of single-mode fibers by gaussian-shaped laser beams.

1,134 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the fundamental properties and latest developments in high-power fiber lasers are summarized and reviewed, focusing primarily on the most common fiber laser configurations and the associated cladding pumping issues.
Abstract: In this paper, we summarize the fundamental properties and review the latest developments in high power fiber lasers. The review is focused primarily on the most common fiber laser configurations and the associated cladding pumping issues. Special attention is placed on pump combination techniques and the parameters that affect the brightness enhancement observed in single-mode and multimode high power fiber lasers. The review includes the major limitations imposed by fiber nonlinearities and other parasitic effects, such as optical damage, transverse modal instabilities and photodarkening. Finally, the paper summarizes the power evolution in continuous-wave and pulsed ytterbium-doped fiber lasers and their impact on industrial applications.

812 citations

Journal ArticleDOI
24 Mar 2005-Nature
TL;DR: All-fibre gas cells based on gas-filled hollow-core photonic crystal fibres are reported, which exhibit high performance, excellent long-term pressure stability and ease of use, and could permit gas-phase laser devices incorporated in a ‘credit card’ or even in a laser pointer.
Abstract: Gas-phase materials are used in a variety of laser-based applications--for example, in high-precision frequency measurement, quantum optics and nonlinear optics Their full potential has however not been realized because of the lack of a suitable technology for creating gas cells that can guide light over long lengths in a single transverse mode while still offering a high level of integration in a practical and compact set-up or device As a result, solid-phase materials are still often favoured, even when their performance compares unfavourably with gas-phase systems Here we report the development of all-fibre gas cells that meet these challenges Our structures are based on gas-filled hollow-core photonic crystal fibres, in which we have recently demonstrated substantially enhanced stimulated Raman scattering, and which exhibit high performance, excellent long-term pressure stability and ease of use To illustrate the practical potential of these structures, we report two different devices: a hydrogen-filled cell for efficient generation of rotational Raman scattering using only quasi-continuous-wave laser pulses; and acetylene-filled cells, which we use for absolute frequency-locking of diode lasers with very high signal-to-noise ratios The stable performance of these compact gas-phase devices could permit, for example, gas-phase laser devices incorporated in a 'credit card' or even in a laser pointer

505 citations

Journal ArticleDOI
Dietrich Marcuse1
TL;DR: In this article, a direct numerical integration of the wave equation is used to establish the validity of approximating the fundamental mode of graded-index fibers by a Gaussian function, and the fundamental modes of fibers, whose index profile can be expressed as a power law, are indeed very nearly Gaussian in shape.
Abstract: Direct numerical integration of the wave equation is used to establish the validity of approximating the fundamental mode of graded-index fibers by a Gaussian function. We show that the fundamental modes of fibers, whose index profile can be expressed as a power law, are indeed very nearly Gaussian in shape (that is probably also true for graded-index fibers with convex profiles other than a power law). Graphs and empirical analytical expressions are presented for the optimum Gaussian beam width parameter and for the propagation constant of the fundamental mode.

445 citations

Journal ArticleDOI
TL;DR: The concept of effective area is used to calculate the "phase" boundary between the regimes with single-mode and multi-mode operation and the results can be scaled to a given pitch and thus provide a general map of the effective area.
Abstract: We consider the effective area Ae. of photonic crystal fibers (PCFs) with a triangular air-hole lattice in the cladding. It is first of all an important quantity in the context of non-linearities, but it also has connections to leakage loss, macro-bending loss, and numerical aperture. Single-mode versus multi-mode operation in PCFs can also be studied by comparing effective areas of the different modes. We report extensive numerical studies of PCFs with varying air hole size. Our results can be scaled to a given pitch and thus provide a general map of the effective area. We also use the concept of effective area to calculate the "phase" boundary between the regimes with single-mode and multi-mode operation.

346 citations

Journal ArticleDOI
24 Mar 2005-Nature
TL;DR: A statistical test of the orbital forcing hypothesis is presented, focusing on the rapid deglaciation events known as terminations, and it is shown that the null hypothesis that glacial terminations are independent of obliquity can be rejected at the 5% significance level, whereas the corresponding null hypotheses for eccentricity and precession cannot be rejected.
Abstract: The 100,000-year timescale in the glacial/interglacial cycles of the late Pleistocene epoch (the past ∼700,000 years) is commonly attributed to control by variations in the Earth's orbit1. This hypothesis has inspired models that depend on the Earth's obliquity (∼ 40,000 yr; ∼40 kyr), orbital eccentricity (∼ 100 kyr) and precessional (∼ 20 kyr) fluctuations2,3,4,5, with the emphasis usually on eccentricity and precessional forcing. According to a contrasting hypothesis, the glacial cycles arise primarily because of random internal climate variability6,7,8. Taking these two perspectives together, there are currently more than thirty different models of the seven late-Pleistocene glacial cycles9. Here we present a statistical test of the orbital forcing hypothesis, focusing on the rapid deglaciation events known as terminations10,11. According to our analysis, the null hypothesis that glacial terminations are independent of obliquity can be rejected at the 5% significance level, whereas the corresponding null hypotheses for eccentricity and precession cannot be rejected. The simplest inference consistent with the test results is that the ice sheets terminated every second or third obliquity cycle at times of high obliquity, similar to the original proposal by Milankovitch12. We also present simple stochastic and deterministic models that describe the timing of the late-Pleistocene glacial terminations purely in terms of obliquity forcing.

314 citations