scispace - formally typeset
Search or ask a question
Author

D. Mast

Bio: D. Mast is an academic researcher from Spanish National Research Council. The author has contributed to research in topics: Galaxy & Star formation. The author has an hindex of 42, co-authored 54 publications receiving 7434 citations. Previous affiliations of D. Mast include National University of Cordoba & ASTRON.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
Sebastián F. Sánchez1, Robert C. Kennicutt2, A. Gil de Paz3, G. van de Ven4, José M. Vílchez1, Lutz Wisotzki5, C. J. Walcher5, D. Mast1, J. A. L. Aguerri6, J. A. L. Aguerri1, Sergio Albiol-Pérez7, Almudena Alonso-Herrero1, João Alves8, J. Bakos6, J. Bakos1, T. Bartakova9, Joss Bland-Hawthorn10, Alessandro Boselli11, D. J. Bomans12, África Castillo-Morales3, C. Cortijo-Ferrero1, A. de Lorenzo-Cáceres6, A. de Lorenzo-Cáceres1, A. del Olmo1, Ralf-Jürgen Dettmar12, Angeles I. Díaz13, Simon Ellis14, Simon Ellis10, Jesús Falcón-Barroso6, Jesús Falcón-Barroso1, Hector Flores15, Anna Gallazzi16, Begoña García-Lorenzo6, Begoña García-Lorenzo1, R. M. González Delgado1, Nicolas Gruel, Tim Haines17, C. Hao18, Bernd Husemann5, J. Iglesias-Páramo1, Knud Jahnke4, Benjamin D. Johnson19, Bruno Jungwiert20, Bruno Jungwiert21, Veselina Kalinova4, C. Kehrig5, D. Kupko5, Angel R. Lopez-Sanchez22, Angel R. Lopez-Sanchez14, Mariya Lyubenova4, R. A. Marino1, R. A. Marino3, E. Mármol-Queraltó1, E. Mármol-Queraltó3, I. Márquez1, J. Masegosa1, Sharon E. Meidt4, Jairo Méndez-Abreu6, Jairo Méndez-Abreu1, Ana Monreal-Ibero1, C. Montijo1, A. Mourao23, G. Palacios-Navarro7, Polychronis Papaderos24, Anna Pasquali25, Reynier Peletier, Enrique Pérez1, I. Pérez26, Andreas Quirrenbach, M. Relaño26, F. F. Rosales-Ortega13, F. F. Rosales-Ortega1, Martin Roth5, T. Ruiz-Lara26, Patricia Sanchez-Blazquez13, C. Sengupta1, R. Singh4, Vallery Stanishev23, Scott Trager27, Alexandre Vazdekis6, Alexandre Vazdekis1, Kerttu Viironen1, Vivienne Wild28, Stefano Zibetti16, Bodo L. Ziegler8 
TL;DR: The Calar Alto Legacy Integral Field Area (CALIFA) survey as discussed by the authors was designed to provide a first step in this direction by obtaining spatially resolved spectroscopic information of a diameter selected sample of similar to 600 galaxies in the Local Universe.
Abstract: The final product of galaxy evolution through cosmic time is the population of galaxies in the local universe. These galaxies are also those that can be studied in most detail, thus providing a stringent benchmark for our understanding of galaxy evolution. Through the huge success of spectroscopic single-fiber, statistical surveys of the Local Universe in the last decade, it has become clear, however, that an authoritative observational description of galaxies will involve measuring their spatially resolved properties over their full optical extent for a statistically significant sample. We present here the Calar Alto Legacy Integral Field Area (CALIFA) survey, which has been designed to provide a first step in this direction. We summarize the survey goals and design, including sample selection and observational strategy. We also showcase the data taken during the first observing runs (June/July 2010) and outline the reduction pipeline, quality control schemes and general characteristics of the reduced data. This survey is obtaining spatially resolved spectroscopic information of a diameter selected sample of similar to 600 galaxies in the Local Universe (0.005 < z < 0.03). CALIFA has been designed to allow the building of two-dimensional maps of the following quantities: (a) stellar populations: ages and metallicities; (b) ionized gas: distribution, excitation mechanism and chemical abundances; and (c) kinematic properties: both from stellar and ionized gas components. CALIFA uses the PPAK integral field unit (IFU), with a hexagonal field-of-view of similar to 1.3 square', with a 100% covering factor by adopting a three-pointing dithering scheme. The optical wavelength range is covered from 3700 to 7000 angstrom, using two overlapping setups (V500 and V1200), with different resolutions: R similar to 850 and R similar to 1650, respectively. CALIFA is a legacy survey, intended for the community. The reduced data will be released, once the quality has been guaranteed. The analyzed data fulfill the expectations of the original observing proposal, on the basis of a set of quality checks and exploratory analysis: (i) the final datacubes reach a 3 sigma limiting surface brightness depth of similar to 23.0 mag/arcsec(2) for the V500 grating data (similar to 22.8 mag/arcsec(2) for V1200); (ii) about similar to 70% of the covered field-of-view is above this 3 sigma limit; (iii) the data have a blue-to-red relative flux calibration within a few percent in most of the wavelength range; (iv) the absolute flux calibration is accurate within similar to 8% with respect to SDSS; (v) the measured spectral resolution is similar to 85 km s(-1) for V1200 (similar to 150 km s(-1) for V500); (vi) the estimated accuracy of the wavelength calibration is similar to 5 km s(-1) for the V1200 data (similar to 10 km s(-1) for the V500 data); (vii) the aperture matched CALIFA and SDSS spectra are qualitatively and quantitatively similar. Finally, we show that we are able to carry out all measurements indicated above, recovering the properties of the stellar populations, the ionized gas and the kinematics of both components. The associated maps illustrate the spatial variation of these parameters across the field, reemphasizing the redshift dependence of single aperture spectroscopic measurements. We conclude from this first look at the data that CALIFA will be an important resource for archaeological studies of galaxies in the Local Universe.

1,143 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented the largest and most homogeneous catalog of H ii regions and associations compiled so far, consisting of more than 7000 ionized regions, extracted from 306 galaxies observed by the CALIFA survey.
Abstract: We present the largest and most homogeneous catalog of H ii regions and associations compiled so far The catalog comprises more than 7000 ionized regions, extracted from 306 galaxies observed by the CALIFA survey We describe the procedures used to detect, select, and analyze the spectroscopic properties of these ionized regions In the current study we focus on characterizing of the radial gradient of the oxygen abundance in the ionized gas, based on the study of the deprojecteddistribution of H ii regions We found that all galaxies without clear evidence of an interaction present a common gradient in the oxygen abundance, with a characteristic slope of α_O/H = −01 dex/r_e between 03 and 2 disk effective radii (r_e), and a scatter compatible with random fluctuations around this value, when the gradient is normalized to the disk effective radius The slope is independent of morphology, the incidence of bars, absolute magnitude, or mass Only those galaxies with evidence of interactions and/or clear merging systems present a significantly shallower gradient, consistent with previous results The majority of the 94 galaxies with H ii regions detected beyond two disk effective radii present a flattening in the oxygen abundance The flattening is statistically significant We cannot provide a conclusive answer regarding the origin of this flattening However, our results indicate that its origin is most probably related to the secular evolution of galaxies Finally, we find a drop/truncation of the oxygen abundance in the inner regions for 26 of the galaxies All of them are non-interacting, mostly unbarred Sb/Sbc galaxies This feature is associated with a central star-forming ring, which suggests that both features are produced by radial gas flows induced by resonance processes Our result suggests that galaxy disks grow inside-out, with metal enrichment driven by the local star formation history and with a small variation galaxy-by-galaxy At a certain galactocentric distance, the oxygen abundance seems to be correlated well with the stellar mass density and total stellar mass of the galaxies, independently of other properties of the galaxies Other processes, such as radial mixing and inflows/outflows seem to have a limited effect on shaping of the radial distribution of oxygen abundances, although they are not ruled out

474 citations

Journal ArticleDOI
TL;DR: In this article, the most widely used empirical oxygen calibrations, O3N2 and N2, by using new direct abundance measurements are reviewed and the expected uncertainty of these calibrations as a function of the index value or abundance derived.
Abstract: The use of IFS is since recently allowing to measure the emission line fluxes of an increasingly large number of star-forming galaxies both locally and at high redshift. The main goal of this study is to review the most widely used empirical oxygen calibrations, O3N2 and N2, by using new direct abundance measurements. We pay special attention to the expected uncertainty of these calibrations as a function of the index value or abundance derived and the presence of possible systematic offsets. This is possible thanks to the analysis of the most ambitious compilation of Te-based HII regions to date. This new dataset compiles the Te-based abundances of 603 HII regions extracted from the literature but also includes new measurements from the CALIFA survey. Besides providing new and improved empirical calibrations for the gas abundance, we also present here a comparison between our revisited calibrations with a total of 3423 additional CALIFA HII complexes with abundances derived using the ONS calibration by Pilyugin et al. (2010). The combined analysis of Te-based and ONS abundances allows us to derive their most accurate calibration to date for both the O3N2 and N2 single-ratio indicators, in terms of all statistical significance, quality and coverage of the space of parameters. In particular, we infer that these indicators show shallower abundance dependencies and statistically-significant offsets compared to those of Pettini and Pagel (2004), Nagao et al. (2006) and P\'erez-Montero and Contini (2009). The O3N2 and N2 indicators can be empirically applied to derive oxygen abundances calibrations from either direct abundance determinations with random errors of 0.18 and 0.16, respectively, or from indirect ones (but based on a large amount of data) reaching an average precision of 0.08 and 0.09 dex (random) and 0.02 and 0.08 dex (systematic; compared to the direct estimations),respectively.

442 citations

Journal ArticleDOI
TL;DR: In this article, the authors presented the largest and most homogeneous catalog of HII regions and associations compiled so far, consisting of more than 7000 ionized regions, extracted from 306 galaxies observed by the CALIFA survey.
Abstract: We present the largest and most homogeneous catalog of HII regions and associations compiled so far. The catalog comprises more than 7000 ionized regions, extracted from 306 galaxies observed by the CALIFA survey. We describe the procedures used to detect, select, and analyse the spectroscopic properties of these ionized regions. In the current study we focus on the characterization of the radial gradient of the oxygen abundance in the ionized gas, based on the study of the deprojected distribution of HII regions. We found that all galaxies without clear evidence of an interaction present a common gradient in the oxygen abundance, with a characteristic slope of alpha = -0.1 dex/re between 0.3 and 2 disk effective radii, and a scatter compatible with random fluctuations around this value, when the gradient is normalized to the disk effective radius. The slope is independent of morphology, incidence of bars, absolute magnitude or mass. Only those galaxies with evidence of interactions and/or clear merging systems present a significant shallower gradient, consistent with previous results. The majority of the 94 galaxies with H ii regions detected beyond 2 disk effective radii present a flattening in the oxygen abundance. The flattening is statistically significant. We cannot provide with a conclusive answer regarding the origin of this flattening. However, our results indicate that its origin is most probably related to the secular evolution of galaxies. Finally, we find a drop/truncation of the oxygen abundance in the inner regions for 26 of the galaxies. All of them are non-interacting, mostly unbarred, Sb/Sbc galaxies. This feature is associated with a central star-forming ring, which suggests that both features are produced by radial gas flows induced by resonance processes.

434 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used integral field spectroscopic data from the CALIFA survey to compare the observed radial surface brightness profiles with what is expected from illumination by an AGN.
Abstract: Galaxies, which often contain ionised gas, sometimes also exhibit a so-called low-ionisation nuclear emission line region (LINER). For 30 years this was attributed to a central mass-accreting supermassive black hole (AGN) of low luminosity, making LINER galaxies the largest AGN-sub-population, dominating in numbers over higher luminosity Seyfert galaxies and quasars. This, however, poses a serious problem. While the inferred energy balance is plausible, many LINERs clearly do not contain any other independent signatures of an AGN. Using integral field spectroscopic data from the CALIFA survey, we aim at comparing the observed radial surface brightness profiles with what is expected from illumination by an AGN. Essential for this analysis is a proper extraction of emission-lines, especially weak lines such as the Balmer Hb line which is superposed on an absorption trough. To accomplish this, we use the GANDALF code which simultaneously fits the underlying stellar continuum and emission lines. We show for 48 galaxies with LINER-like emission, that the radial emission-line surface brightness profiles are inconsistent with ionisation by a central point-source and hence cannot be due to an AGN alone. The most probable explanation for the excess LINER-like emission is ionisation by evolved stars during the short but very hot and energetic phase known as post-AGB. This leads us to an entirely new interpretation. Post-AGB stars are ubiquitous and their ionising effect should be potentially observable in every galaxy with gas present and stars older than ~1 Gyr, unless a stronger radiation field from young hot stars or an AGN outshines them. This means that galaxies with LINER-like emission are in fact not a class defined by a property, but rather by the absence of a property. It also explains why LINER emission is observed mostly in massive galaxies with old stars and little star formation.

269 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The Virgo Consortium's EAGLE project as discussed by the authors is a suite of hydrodynamical simulations that follow the formation of galaxies and black holes in representative volumes, where thermal energy is injected into the gas, allowing winds to develop without predetermined speed or mass loading factors.
Abstract: We introduce the Virgo Consortium's EAGLE project, a suite of hydrodynamical simulations that follow the formation of galaxies and black holes in representative volumes. We discuss the limitations of such simulations in light of their finite resolution and poorly constrained subgrid physics, and how these affect their predictive power. One major improvement is our treatment of feedback from massive stars and AGN in which thermal energy is injected into the gas without the need to turn off cooling or hydrodynamical forces, allowing winds to develop without predetermined speed or mass loading factors. Because the feedback efficiencies cannot be predicted from first principles, we calibrate them to the z~0 galaxy stellar mass function and the amplitude of the galaxy-central black hole mass relation, also taking galaxy sizes into account. The observed galaxy mass function is reproduced to ≲0.2 dex over the full mass range, 108

2,828 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review progress over the past decade in observations of large-scale star formation, with a focus on the interface between extragalactic and Galactic studies.
Abstract: We review progress over the past decade in observations of large-scale star formation, with a focus on the interface between extragalactic and Galactic studies. Methods of measuring gas contents and star-formation rates are discussed, and updated prescriptions for calculating star-formation rates are provided. We review relations between star formation and gas on scales ranging from entire galaxies to individual molecular clouds.

2,525 citations

Journal ArticleDOI
TL;DR: Fuzzy dark matter (FDM) as discussed by the authorsDM is an alternative to CDM, which is an extremely light boson having a de Broglie wavelength inside the galaxy.
Abstract: Many aspects of the large-scale structure of the Universe can be described successfully using cosmological models in which $27\ifmmode\pm\else\textpm\fi{}1%$ of the critical mass-energy density consists of cold dark matter (CDM). However, few---if any---of the predictions of CDM models have been successful on scales of $\ensuremath{\sim}10\text{ }\text{ }\mathrm{kpc}$ or less. This lack of success is usually explained by the difficulty of modeling baryonic physics (star formation, supernova and black-hole feedback, etc.). An intriguing alternative to CDM is that the dark matter is an extremely light ($m\ensuremath{\sim}{10}^{\ensuremath{-}22}\text{ }\text{ }\mathrm{eV}$) boson having a de Broglie wavelength $\ensuremath{\lambda}\ensuremath{\sim}1\text{ }\text{ }\mathrm{kpc}$, often called fuzzy dark matter (FDM). We describe the arguments from particle physics that motivate FDM, review previous work on its astrophysical signatures, and analyze several unexplored aspects of its behavior. In particular, (i) FDM halos or subhalos smaller than about $1{0}^{7}(m/{10}^{\ensuremath{-}22}\text{ }\text{ }\mathrm{eV}{)}^{\ensuremath{-}3/2}$ ${M}_{\ensuremath{\bigodot}}$ do not form, and the abundance of halos smaller than a few times $1{0}^{10}(m/{10}^{\ensuremath{-}22}\text{ }\text{ }\mathrm{eV}{)}^{\ensuremath{-}4/3}$ ${M}_{\ensuremath{\bigodot}}$ is substantially smaller in FDM than in CDM. (ii) FDM halos are comprised of a central core that is a stationary, minimum-energy solution of the Schr\"odinger-Poisson equation, sometimes called a ``soliton,'' surrounded by an envelope that resembles a CDM halo. The soliton can produce a distinct signature in the rotation curves of FDM-dominated systems. (iii) The transition between soliton and envelope is determined by a relaxation process analogous to two-body relaxation in gravitating N-body systems, which proceeds as if the halo were composed of particles with mass $\ensuremath{\sim}\ensuremath{\rho}{\ensuremath{\lambda}}^{3}$ where $\ensuremath{\rho}$ is the halo density. (iv) Relaxation may have substantial effects on the stellar disk and bulge in the inner parts of disk galaxies, but has negligible effect on disk thickening or globular cluster disruption near the solar radius. (v) Relaxation can produce FDM disks but a FDM disk in the solar neighborhood must have a half-thickness of at least $\ensuremath{\sim}300(m/{10}^{\ensuremath{-}22}\text{ }\text{ }\mathrm{eV}{)}^{\ensuremath{-}2/3}\text{ }\text{ }\mathrm{pc}$ and a midplane density less than $0.2(m/{10}^{\ensuremath{-}22}\text{ }\text{ }\mathrm{eV}{)}^{2/3}$ times the baryonic disk density. (vi) Solitonic FDM subhalos evaporate by tunneling through the tidal radius and this limits the minimum subhalo mass inside $\ensuremath{\sim}30\text{ }\text{ }\mathrm{kpc}$ of the Milky Way to a few times $1{0}^{8}(m/{10}^{\ensuremath{-}22}\text{ }\text{ }\mathrm{eV}{)}^{\ensuremath{-}3/2}$ ${M}_{\ensuremath{\bigodot}}$. (vii) If the dark matter in the Fornax dwarf galaxy is composed of CDM, most of the globular clusters observed in that galaxy should have long ago spiraled to its center, and this problem is resolved if the dark matter is FDM. (viii) FDM delays galaxy formation relative to CDM but its galaxy-formation history is consistent with current observations of high-redshift galaxies and the late reionization observed by Planck. If the dark matter is composed of FDM, most observations favor a particle mass $\ensuremath{\gtrsim}{10}^{\ensuremath{-}22}\text{ }\text{ }\mathrm{eV}$ and the most significant observational consequences occur if the mass is in the range $1--10\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}22}\text{ }\text{ }\mathrm{eV}$. There is tension with observations of the Lyman-$\ensuremath{\alpha}$ forest, which favor $m\ensuremath{\gtrsim}10--20\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}22}\text{ }\text{ }\mathrm{eV}$ and we discuss whether more sophisticated models of reionization may resolve this tension.

1,365 citations

Journal ArticleDOI
TL;DR: SDSS-IV as mentioned in this paper is a project encompassing three major spectroscopic programs: the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA), the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), and the Time Domain Spectroscopy Survey (TDSS).
Abstract: We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median $z\sim 0.03$). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between $z\sim 0.6$ and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July.

1,200 citations

Journal ArticleDOI
Sebastián F. Sánchez1, Robert C. Kennicutt2, A. Gil de Paz3, G. van de Ven4, José M. Vílchez1, Lutz Wisotzki5, C. J. Walcher5, D. Mast1, J. A. L. Aguerri1, J. A. L. Aguerri6, Sergio Albiol-Pérez7, Almudena Alonso-Herrero1, João Alves8, J. Bakos6, J. Bakos1, T. Bartakova9, Joss Bland-Hawthorn10, Alessandro Boselli11, D. J. Bomans12, África Castillo-Morales3, C. Cortijo-Ferrero1, A. de Lorenzo-Cáceres6, A. de Lorenzo-Cáceres1, A. del Olmo1, Ralf-Jürgen Dettmar12, Angeles I. Díaz13, Simon Ellis14, Simon Ellis10, Jesús Falcón-Barroso1, Jesús Falcón-Barroso6, Hector Flores15, Anna Gallazzi16, Begoña García-Lorenzo1, Begoña García-Lorenzo6, R. M. González Delgado1, Nicolas Gruel, Tim Haines17, C. Hao18, Bernd Husemann5, J. Iglesias-Páramo1, Knud Jahnke4, Benjamin D. Johnson19, Bruno Jungwiert20, Bruno Jungwiert21, Veselina Kalinova4, C. Kehrig5, D. Kupko5, Angel R. Lopez-Sanchez14, Angel R. Lopez-Sanchez22, Mariya Lyubenova4, R. A. Marino3, R. A. Marino1, E. Mármol-Queraltó3, E. Mármol-Queraltó1, I. Márquez1, J. Masegosa1, Sharon E. Meidt4, Jairo Méndez-Abreu6, Jairo Méndez-Abreu1, Ana Monreal-Ibero1, C. Montijo1, A. Mourao23, G. Palacios-Navarro7, Polychronis Papaderos24, Anna Pasquali25, Reynier Peletier, Enrique Pérez1, I. Pérez26, Andreas Quirrenbach, M. Relaño26, F. F. Rosales-Ortega1, F. F. Rosales-Ortega13, Martin Roth5, T. Ruiz-Lara26, Patricia Sanchez-Blazquez13, C. Sengupta1, R. Singh4, Vallery Stanishev23, Scott Trager27, Alexandre Vazdekis1, Alexandre Vazdekis6, Kerttu Viironen1, Vivienne Wild28, Stefano Zibetti16, Bodo L. Ziegler8 
TL;DR: The Calar Alto Legacy Integral Field Area (CALIFA) survey as discussed by the authors was designed to provide a first step in this direction by obtaining spatially resolved spectroscopic information of a diameter selected sample of similar to 600 galaxies in the Local Universe.
Abstract: The final product of galaxy evolution through cosmic time is the population of galaxies in the local universe. These galaxies are also those that can be studied in most detail, thus providing a stringent benchmark for our understanding of galaxy evolution. Through the huge success of spectroscopic single-fiber, statistical surveys of the Local Universe in the last decade, it has become clear, however, that an authoritative observational description of galaxies will involve measuring their spatially resolved properties over their full optical extent for a statistically significant sample. We present here the Calar Alto Legacy Integral Field Area (CALIFA) survey, which has been designed to provide a first step in this direction. We summarize the survey goals and design, including sample selection and observational strategy. We also showcase the data taken during the first observing runs (June/July 2010) and outline the reduction pipeline, quality control schemes and general characteristics of the reduced data. This survey is obtaining spatially resolved spectroscopic information of a diameter selected sample of similar to 600 galaxies in the Local Universe (0.005 < z < 0.03). CALIFA has been designed to allow the building of two-dimensional maps of the following quantities: (a) stellar populations: ages and metallicities; (b) ionized gas: distribution, excitation mechanism and chemical abundances; and (c) kinematic properties: both from stellar and ionized gas components. CALIFA uses the PPAK integral field unit (IFU), with a hexagonal field-of-view of similar to 1.3 square', with a 100% covering factor by adopting a three-pointing dithering scheme. The optical wavelength range is covered from 3700 to 7000 angstrom, using two overlapping setups (V500 and V1200), with different resolutions: R similar to 850 and R similar to 1650, respectively. CALIFA is a legacy survey, intended for the community. The reduced data will be released, once the quality has been guaranteed. The analyzed data fulfill the expectations of the original observing proposal, on the basis of a set of quality checks and exploratory analysis: (i) the final datacubes reach a 3 sigma limiting surface brightness depth of similar to 23.0 mag/arcsec(2) for the V500 grating data (similar to 22.8 mag/arcsec(2) for V1200); (ii) about similar to 70% of the covered field-of-view is above this 3 sigma limit; (iii) the data have a blue-to-red relative flux calibration within a few percent in most of the wavelength range; (iv) the absolute flux calibration is accurate within similar to 8% with respect to SDSS; (v) the measured spectral resolution is similar to 85 km s(-1) for V1200 (similar to 150 km s(-1) for V500); (vi) the estimated accuracy of the wavelength calibration is similar to 5 km s(-1) for the V1200 data (similar to 10 km s(-1) for the V500 data); (vii) the aperture matched CALIFA and SDSS spectra are qualitatively and quantitatively similar. Finally, we show that we are able to carry out all measurements indicated above, recovering the properties of the stellar populations, the ionized gas and the kinematics of both components. The associated maps illustrate the spatial variation of these parameters across the field, reemphasizing the redshift dependence of single aperture spectroscopic measurements. We conclude from this first look at the data that CALIFA will be an important resource for archaeological studies of galaxies in the Local Universe.

1,143 citations