scispace - formally typeset
Search or ask a question
Author

D. Mori

Bio: D. Mori is an academic researcher from Toyota. The author has contributed to research in topics: Liquid hydrogen & Hydrogen. The author has an hindex of 2, co-authored 2 publications receiving 405 citations.

Papers
More filters
Journal ArticleDOI
D. Mori1, K. Hirose1
TL;DR: In this article, a new idea of combining metal hydride and high pressure was proposed to solve some difficulties and improve performance such as gravimetric density, but it has several difficulties for the vehicle applications such as low temperature discharge characteristics and quick charge capability due to its reaction heat.

467 citations

Journal ArticleDOI
M. Emans1, D. Mori2, G. Krainz1
TL;DR: In this article, an optimized filling procedure for automotive liquid hydrogen storage systems was defined based on data gained from dedicated measurements of a current prototype tank system, and it was confirmed that a minimum amount of back-gas can be reached if the transferred liquid is more than 2 K below the boiling temperature.

4 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This Review introduces several typical energy storage systems, including thermal, mechanical, electromagnetic, hydrogen, and electrochemical energy storage, and the current status of high-performance hydrogen storage materials for on-board applications and electrochemicals for lithium-ion batteries and supercapacitors.
Abstract: [Liu, Chang; Li, Feng; Ma, Lai-Peng; Cheng, Hui-Ming] Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China.;Cheng, HM (reprint author), Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, 72 Wenhua Rd, Shenyang 110016, Peoples R China;cheng@imr.ac.cn

4,105 citations

Journal ArticleDOI
TL;DR: In this paper, an updated review of the state of technology and installations of several energy storage technologies were presented, and their various characteristics were analyzed, including their storage properties, current state in the industry and feasibility for future installation.

761 citations

Journal ArticleDOI
TL;DR: In this paper, recent developments in the production of hydrogen fuel, applications and storage together with the environmental impacts of hydrogen as energy carrier are emphasized. But, storage remains a big challenge.
Abstract: Transportation of people and commodities being a socio-economic criterion needs clean energy and the demand is kept on increasing with modernization. Consequently, generation of a fuel with safer, efficient, economic and reasonably environmental friendly features is the key issue towards fulfilling such demands. Hydrogen seems to be an ideal synthetic energy carrier due to its lightweight, exclusive abundance and environmentally benign oxidation product (water). However, storage remains a big challenge. In this communication, recent developments in the production of hydrogen fuel, applications and storage together with the environmental impacts of hydrogen as energy carrier are emphasized.

666 citations

Journal ArticleDOI
TL;DR: A review of the research progress in the development of diverse liquid-phase chemical hydrogen storage materials, including organic and inorganic chemical hydrides, with emphases on the syntheses of active catalysts for catalytic hydrogen generation and storage is presented in this paper.
Abstract: The search for hydrogen storage materials capable of efficiently storing hydrogen in a compact and lightweight package is one of the most difficult challenges for the upcoming hydrogen economy. Liquid chemical hydrides with high gravimetric and volumetric hydrogen densities have the potential to overcome the challenges associated with hydrogen storage. Moreover, the liquid-phase nature of these hydrogen storage systems provides significant advantages of easy recharging, and the availability of the current liquid fuel infrastructure for recharging. In this review, we briefly survey the research progress in the development of diverse liquid-phase chemical hydrogen storage materials, including organic and inorganic chemical hydrides, with emphases on the syntheses of active catalysts for catalytic hydrogen generation and storage. Moreover, the advantages and drawbacks of each storage system are discussed.

617 citations

Journal ArticleDOI
TL;DR: In this article, the authors present the recent developments in the field of production, storage, transport and delivery of hydrogen along with environmental and safety aspects of its use as an energy carrier.
Abstract: Mobility (transport of people and goods) is a socio-economic reality and need for which is bound to grow in the coming years. Modes of transport should be safe, economic and reasonably environmental friendly. Hydrogen could be ideal as a synthetic energy carrier for transport sector as its gravimetric energy density is very high, abundantly available in combined form on the earth and its oxidation product (water) does not contribute to greenhouse gas emissions. However, its sustainable production from renewable resources economically, on-board storage to provide desirable driving range, usage in durable energy conversion devices and development of infrastructure for its delivery remain significant challenges. In this article, recent developments in the field of production, storage, transport and delivery of hydrogen along with environmental and safety aspects of its use as an energy carrier are presented. Almost any energy source can be used to produce hydrogen. Presently, non-renewable sources dominate hydrogen production processes but the need of the hour is to develop and promote the share of renewable sources for hydrogen production to make it completely sustainable. Hydrogen may be used as fuel for almost any application, where fossil fuels are used presently and would offer immediate benefits over the conventional fuels, if produced from renewable sources. For achieving a successful "hydrogen economy" in the near future, the technical and economic challenges associated with hydrogen must be addressed quickly. Finding feasible solutions to different challenges may take some time but technological breakthrough by way of on-going efforts do promise hydrogen as the ultimate solution for meeting our future energy needs for the transport sector.

433 citations