scispace - formally typeset
Search or ask a question
Author

D. R. Baghurst

Bio: D. R. Baghurst is an academic researcher. The author has contributed to research in topics: Dielectric heating & Microwave. The author has an hindex of 1, co-authored 1 publications receiving 151 citations.

Papers
More filters

Cited by
More filters
Journal ArticleDOI
TL;DR: There are good reasons why many pharmaceutical companies are incorporating microwave chemistry into their drug discovery efforts and the many advantages of using rapid 'microwave flash heating' for chemical synthesis is the dramatic reduction in reaction times.
Abstract: In the past few years, using microwave energy to heat and drive chemical reactions has become increasingly popular in the medicinal chemistry community. First described 20 years ago, this non-classical heating method has matured from a laboratory curiosity to an established technique that is heavily used in academia and industry. One of the many advantages of using rapid 'microwave flash heating' for chemical synthesis is the dramatic reduction in reaction times--from days and hours to minutes and seconds. As will be discussed here, there are good reasons why many pharmaceutical companies are incorporating microwave chemistry into their drug discovery efforts.

531 citations

Journal ArticleDOI
TL;DR: In this review, more than 220 published examples of microwave-assisted synthetic organic transformations from the 2004 to 2008 literature are discussed and more than 500 reaction schemes are presented in the Electronic Supplementary Material.
Abstract: Direct and rapid heating by microwave irradiation in combination with sealed vessel processing in many cases enables reactions to be carried out in a fraction of the time generally required using conventional conditions. This makes microwave chemistry an ideal tool for rapid reaction scouting and optimization of conditions, allowing very rapid progress through hypotheses–experiment–results iterations. The speed at which multiple variations of reaction conditions can be performed allows a morning discussion of “What should we try?” to become an after-lunch discussion of “What were the results” Not surprisingly, therefore, many scientists both in academia and industry have turned to microwave synthesis as a front-line methodology for their projects. In this review, more than 220 published examples of microwave-assisted synthetic organic transformations from the 2004 to 2008 literature are discussed. An additional ca. 500 reaction schemes are presented in the Electronic Supplementary Material, providing the reader with an overall number of ca. 930 references in this fast-moving and exciting field.

423 citations

Journal ArticleDOI
A. A. Refaat1
TL;DR: In this article, the main changes occurring in the oil during frying in order to identify the characteristics of oil after frying and the anticipated effects of the products formed in the frying process on biodiesel quality were reviewed.
Abstract: The production of biodiesel from waste vegetable oil offers a triple-facet solution: economic, environmental and waste management. The new process technologies developed during the last years made it possible to produce biodiesel from recycled frying oils comparable in quality to that of virgin vegetable oil biodiesel with an added attractive advantage of being lower in price. Thus, biodiesel produced from recycled frying oils has the same possibilities to be utilized. While transesterification is well-established and becoming increasingly important, there remains considerable inefficiencies in existing transesterification processes. There is an imperative need to improve the existing biodiesel production methods from both economic and environmental viewpoints and to investigate alternative and innovative production processes. This study highlights the main changes occurring in the oil during frying in order to identify the characteristics of oil after frying and the anticipated effects of the products formed in the frying process on biodiesel quality and attempts to review the different techniques used in the production of biodiesel from recycled oils, stressing the advantages and limitations of each technique and the optimization conditions for each process. The emerging technologies which can be utilized in this field are also investigated. The quality of biodiesel produced from waste vegetable oil in previous studies is also reviewed and the performance of engines fueled with this biodiesel and the characteristics of the exhaust emissions resulting from it are highlighted. The overarching goal is to stimulate further activities in the field.

278 citations

Journal ArticleDOI
22 May 2013
TL;DR: In this paper, the principles and practices of microwave energy technology as applied in biodiesel feedstock preparation and processing are discussed in detail, as well as potential design and operation challenges for developing large scale biodiesel production systems.
Abstract: Microwave energy based chemical synthesis has several merits and is important from both scientific and engineering standpoints. Microwaves have been applied in numerous inorganic and organic chemical syntheses; perhaps, from the time their ability to work as heat source was discovered. Recent laboratory scale microwave applications in biodiesel production proved the potential of the technology to achieve superior results over conventional techniques. Short reaction time, cleaner reaction products, and reduced separation-purification times are the key observations reported by many researchers. Energy utilization and specific energy requirements for microwave based biodiesel synthesis are reportedly better than conventional techniques. Microwaves can be very well utilized in feedstock preparation, extraction and transesterification stages of the biodiesel production process. Although microwave technology has advanced in other food, pharmaceutical and polymer chemistry related research and industry, it has yet to prove its potential in the biodiesel industry at large scale applications. This paper reviews principles and practices of microwave energy technology as applied in biodiesel feedstock preparation and processing. Analysis of laboratory scale studies, potential design and operation challenges for developing large scale biodiesel production systems are discussed in detail.

209 citations

Journal ArticleDOI
TL;DR: In this article, a critical review on the use of microwave energy in metallurgy is presented, with emphasis on both fundamentals of microwave heating and recent experimental efforts on extractive metallomics via pyrometallurgical and/or hydrometalurgical routes.
Abstract: Microwave heating has been extensively explored in various fields of materials processing. This technology exhibits unique characteristics including volumetric and selective heating, which eventually lead to many exceptional advantages over conventional processing methods including both energy and cost savings, improved product quality, faster processing and greater eco-friendliness, making microwave heating appropriate for applications in metallurgy. This paper presents a critical review on the use of microwave energy in metallurgy, with emphasis on both fundamentals of microwave heating and recent experimental efforts on extractive metallurgy via pyrometallurgical and/or hydrometallurgical routes. Applications to metallurgical processes for extraction of various metals, including heavy metals (Fe, Ni, Co, Cu, Pb and Zn), light metals (Al and Mg), rare metals (Ti, Mo, W and Re) and precious metals (Au, Ag and Pt), are reviewed and discussed.

157 citations