scispace - formally typeset
Search or ask a question
Author

D Rugg

Bio: D Rugg is an academic researcher from Rolls-Royce Motor Cars. The author has an hindex of 1, co-authored 1 publications receiving 122 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: This review is focused on free-electron lasers (FELs) in the hard to soft x-ray regime and provides newcomers to the area with insights into: the basic physics of FELs, the qualities of the radiation they produce, the challenges of transmitting that radiation to end users and the diversity of current scientific applications.
Abstract: This review is focused on free-electron lasers (FELs) in the hard to soft x-ray regime. The aim is to provide newcomers to the area with insights into: the basic physics of FELs, the qualities of the radiation they produce, the challenges of transmitting that radiation to end users and the diversity of current scientific applications. Initial consideration is given to FEL theory in order to provide the foundation for discussion of FEL output properties and the technical challenges of short-wavelength FELs. This is followed by an overview of existing x-ray FEL facilities, future facilities and FEL frontiers. To provide a context for information in the above sections, a detailed comparison of the photon pulse characteristics of FEL sources with those of other sources of high brightness x-rays is made. A brief summary of FEL beamline design and photon diagnostics then precedes an overview of FEL scientific applications. Recent highlights are covered in sections on structural biology, atomic and molecular physics, photochemistry, non-linear spectroscopy, shock physics, solid density plasmas. A short industrial perspective is also included to emphasise potential in this area.

178 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A relaxation of averaged alternating reflectors and determine the fixed-point set of the related operator in the convex case is proposed and the effectiveness of the algorithm compared to the current state of the art is demonstrated.
Abstract: We report on progress in algorithms for iterative phase retrieval. The theory of convex optimization is used to develop and to gain insight into counterparts for the nonconvex problem of phase retrieval. We propose a relaxation of averaged alternating reflectors and determine the fixed point set of the related operator in the convex case. A numerical study supports our theoretical observations and demonstrates the effectiveness of the algorithm compared to the current state of the art.

174 citations

01 Jan 2015
TL;DR: Density functional theory calculations indicate that new electronic states appear in the O K-edge x-ray absorption spectrum that result from changes in the adsorption site and bond formation between CO and O with a distribution of OC–O bond lengths close to the transition state (TS).
Abstract: Catching CO oxidation Details of the transition state that forms as carbon monoxide (CO) adsorbed on a ruthenium surface is oxidized to CO2 have been revealed by ultrafast excitation and probe methods. Öström et al. initiated the reaction between CO and adsorbed oxygen atoms with laser pulses that rapidly heated the surface and then probed the changes in electronic structure with oxygen x-ray absorption spectroscopy. They observed transition-state configurations that are consistent with density functional theory and a quantum oscillator model. Science, this issue p. 978 Ultrafast x-ray spectroscopy reveals electronic changes that occur during the oxidation of carbon monoxide on a ruthenium surface. Femtosecond x-ray laser pulses are used to probe the carbon monoxide (CO) oxidation reaction on ruthenium (Ru) initiated by an optical laser pulse. On a time scale of a few hundred femtoseconds, the optical laser pulse excites motions of CO and oxygen (O) on the surface, allowing the reactants to collide, and, with a transient close to a picosecond (ps), new electronic states appear in the O K-edge x-ray absorption spectrum. Density functional theory calculations indicate that these result from changes in the adsorption site and bond formation between CO and O with a distribution of OC–O bond lengths close to the transition state (TS). After 1 ps, 10% of the CO populate the TS region, which is consistent with predictions based on a quantum oscillator model.

160 citations

Journal ArticleDOI
TL;DR: It is outlined how coherent broadband X-ray radiation, emitted in high-harmonic generation, can be used to follow dynamics in increasingly complex systems.
Abstract: Attosecond science opened the door to observing nuclear and electronic dynamics in real time and has begun to expand beyond its traditional grounds. Among several spectroscopic techniques, X-ray transient absorption spectroscopy has become key in understanding matter on ultrafast time scales. In this review, we illustrate the capabilities of this unique tool through a number of iconic experiments. We outline how coherent broadband X-ray radiation, emitted in high-harmonic generation, can be used to follow dynamics in increasingly complex systems. Experiments performed in both molecules and solids are discussed at length, on time scales ranging from attoseconds to picoseconds, and in perturbative or strong-field excitation regimes. This article is part of the theme issue 'Measurement of ultrafast electronic and structural dynamics with X-rays'.

137 citations

Journal ArticleDOI
TL;DR: In this paper, the authors discuss the recent developments in this field, and the prospects for using these techniques to create materials with novel functionalities in a controlled way, and discuss different classes of phenomena observed during and after the optical illumination.
Abstract: Ultrafast laser pulses can be used to drive materials into nonequilibrium states that have unusual properties and are promising for technological applications. Different classes of phenomena are observed during and after the optical illumination. This Colloquium discusses the recent developments in this field, and the prospects for using these techniques to create materials with novel functionalities in a controlled way.

111 citations

Journal ArticleDOI
TL;DR: In this article, a review of the latest developments in DUV laser-based photoemission spectroscopy systems, including the super-high energy and momentum resolution ARPES, the spin-resolved and time-of-flight ARPs, and the time-resolution ARPs are presented.
Abstract: The significant progress in angle-resolved photoemission spectroscopy (ARPES) in last three decades has elevated it from a traditional band mapping tool to a precise probe of many-body interactions and dynamics of quasiparticles in complex quantum systems. The recent developments of deep ultraviolet (DUV, including ultraviolet and vacuum ultraviolet) laser-based ARPES have further pushed this technique to a new level. In this paper, we review some latest developments in DUV laser-based photoemission systems, including the super-high energy and momentum resolution ARPES, the spin-resolved ARPES, the time-of-flight ARPES, and the time-resolved ARPES. We also highlight some scientific applications in the study of electronic structure in unconventional superconductors and topological materials using these state-of-the-art DUV laser-based ARPES. Finally we provide our perspectives on the future directions in the development of laser-based photoemission systems.

83 citations