scispace - formally typeset
Search or ask a question
Author

D S Falconer

Bio: D S Falconer is an academic researcher. The author has contributed to research in topics: Quantitative genetics. The author has an hindex of 1, co-authored 1 publications receiving 2418 citations.

Papers
More filters

Cited by
More filters
Book
31 Jul 1992
TL;DR: The LISREL Script for Rater Bias Model and Data for Simplex Model as mentioned in this paper is one of the most well-known models in the literature for gene expression analysis.
Abstract: Preface. List of Figures. List of Tables. 1. The Scope of Genetic Analyses. 2. Data Summary. 3. Biometrical Genetics. 4. Matrix Algebra. 5. Path Analysis and Structural Equations. 6. LISREL Models and Methods. 7. Model Fitting Functions and Optimization. 8. Univariate Analysis. 9. Power and Sample Size. 10. Social Interaction. 11. Sex Limitation and GE Interaction. 12. Multivariate Analysis. 13. Direction of Causation. 14. Repeated Measures. 15. Longitudinal Mean Trends. 16. Observer Ratings. 17. Assortment and Cultural Transmission. 18. Future Directions. Appendices: A. List of Participants. B. The Greek Alphabet. C. LISREL Scripts for Univariate Models. D. LISREL Script for Power Calculation. E. LISREL Scripts for Multivariate Models. F. LISREL Script for Sibling Interaction Model. G. LISREL Scripts for Sex and GE Interaction. H. LISREL Script for Rater Bias Model. I. LISREL Scripts for Direction of Causation. J. LISREL Script and Data for Simplex Model. K. LISREL Scripts for Assortment Models. Bibliography. Index.

3,317 citations

Journal ArticleDOI
TL;DR: This paper advocates multifaceted approaches to the study of local adaptation, and stresses the need for experiments explicitly addressing hypotheses about the role of particular ecological and genetic factors that promote or hinder local adaptation.
Abstract: Studies of local adaptation provide important insights into the power of natural selection relative to gene flow and other evolutionary forces. They are a paradigm for testing evolutionary hypotheses about traits favoured by particular environmental factors. This paper is an attempt to summarize the conceptual framework for local adaptation studies. We first review theoretical work relevant for local adaptation. Then we discuss reciprocal transplant and common garden experiments designed to detect local adaptation in the pattern of deme · habitat interaction for fitness. Finally, we review research questions and approaches to studying the processes of local adaptation ‐ divergent natural selection, dispersal and gene flow, and other processes affecting adaptive differentiation of local demes. We advocate multifaceted approaches to the study of local adaptation, and stress the need for experiments explicitly addressing hypotheses about the role of particular ecological and genetic factors that promote or hinder local adaptation. Experimental evolution of replicated populations in controlled spatially heterogeneous environments allow direct tests of such hypotheses, and thus would be a valuable way to complement research on natural populations.

3,215 citations

Journal ArticleDOI
TL;DR: The authors propose an empirically testable theoretical model that goes beyond and qualifies the established behavioral genetics paradigm by allowing for nonadditive synergistic effects, direct measures of the environment, and mechanisms of organism-environment interaction through which genotypes are transformed into phenotypes.
Abstract: In response to Anastasi's (1958) long-standing challenge, the authors propose an empirically testable theoretical model that (a) goes beyond and qualifies the established behavioral genetics paradigm by allowing for nonadditive synergistic effects, direct measures of the environment, and mechanisms of organism-environment interaction, called proximal processes, through which genotypes are transformed into phenotypes; (b) hypothesizes that estimates of heritability (e.g., h2) increase markedly with the magnitude of proximal processes; (c) demonstrates that heritability measures the proportion of variation in individual differences attributable only to actualized genetic potential, with the degree of nonactualized potential remaining unknown; (d) proposes that, by enhancing proximal processes and environments, it is possible to increase the extent of actualized genetic potentials for developmental competence.

2,609 citations

Journal ArticleDOI
TL;DR: A variance component approach implemented in publicly available software, EMMA eXpedited (EMMAX), that reduces the computational time for analyzing large GWAS data sets from years to hours is reported.
Abstract: Although genome-wide association studies (GWASs) have identified numerous loci associated with complex traits, imprecise modeling of the genetic relatedness within study samples may cause substantial inflation of test statistics and possibly spurious associations. Variance component approaches, such as efficient mixed-model association (EMMA), can correct for a wide range of sample structures by explicitly accounting for pairwise relatedness between individuals, using high-density markers to model the phenotype distribution; but such approaches are computationally impractical. We report here a variance component approach implemented in publicly available software, EMMA eXpedited (EMMAX), that reduces the computational time for analyzing large GWAS data sets from years to hours. We apply this method to two human GWAS data sets, performing association analysis for ten quantitative traits from the Northern Finland Birth Cohort and seven common diseases from the Wellcome Trust Case Control Consortium. We find that EMMAX outperforms both principal component analysis and genomic control in correcting for sample structure.

2,316 citations

Journal ArticleDOI
TL;DR: It is shown here that a substantial portion of missing heritability could arise from overestimation of the denominator, creating “phantom heritability,” and a method for estimating heritability from isolated populations that is not inflated by genetic interactions is described.
Abstract: justified, because models with interactions are also consistent with observable data; and (iii) under such models, the total heritability may be much smaller and thus the proportion of heritability explained much larger. For example, 80% of the currently missing heritability for Crohn’s disease could be due to genetic interactions, if the disease involves interaction among three pathways. In short, missing heritability need not directly correspond to missing variants, because current estimates of total heritability may be significantly inflated by genetic interactions. Finally, we describe a method for estimating heritability from isolated populations that is not inflated by genetic interactions.

1,505 citations